Duval Jérôme F L, van Leeuwen Herman P, Norde Willem, Town Raewyn M
Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.
Adv Colloid Interface Sci. 2021 Apr;290:102400. doi: 10.1016/j.cis.2021.102400. Epub 2021 Mar 4.
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
我们回顾了描述纳米颗粒化学动力学特征所涉及的概念,并应用该框架来深入了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒粒子与空气颗粒物(PM)之间相互作用的物理化学特性。鉴于世界卫生组织承认SARS-CoV-2可能通过呼吸道飞沫传播,且美国疾病控制与预防中心认识到SARS-CoV-2可通过空气传播,我们的分析具有高度相关性。在我们的理论处理中,病毒粒子被视为核壳纳米颗粒,并普遍纳入了各种相互作用能对病毒粒子与PM结合(静电、疏水、伦敦-范德华力等)的贡献。我们回顾了关于SARS-CoV-2病毒粒子物理化学特征的有限现有文献,并确定了知识空白。尽管缺乏定量数据,但我们的概念框架定性预测,病毒粒子与PM的结合体在向宿主细胞表面扩散的时间尺度上基本能够保持平衡。相关传质系数的比较表明,肺泡宿主细胞对病毒粒子的生物内化需求可能大于扩散供应。在这种情况下,游离的和吸附在PM上的病毒粒子都可能对传播剂量有贡献。这一结果表明PM有可能作为病毒粒子递送至宿主细胞靶点的载体。因此,我们的批判性综述表明,病毒粒子与PM相互作用的化学动力学可能在2019冠状病毒病(COVID-19)的传播中起关键作用,并为解释空气污染事件与COVID-19疫情之间报道的相关性提供了坚实基础。