Gómez-Marín Ana Ma, Hernández-Ortíz Juan P
Departamento de Química y Petróleos, Universidad Nacional de Colombia, sede Medellín, Carrera 80 # 65-223, Bloque M3-050, Medellín, Colombia.
Phys Chem Chem Phys. 2014 Feb 7;16(5):1945-56. doi: 10.1039/c3cp54173h.
The differential capacity and the potential distribution at electrode/solid polymer electrolyte membrane/solution interfaces are calculated through an analytical approach. The model considers coions' and counterions' permeation through the membrane from the solvent phase and the ions' partitioning equilibrium at the SPEM/solution interface. The latter effects are included by incorporating the Donnan equilibrium, the steric hindrance, the solvation energy change when ions move from water to membrane pores and ion electrostatic interactions. It is shown that capacitance maxima in capacitance-potential curves may appear because of the acid-base dissociation process inside the membrane and the change in the ions' total interaction energy with the applied potential. For low dielectric constants inside membrane pores, εp, sharp peaks can be obtained. These peaks broaden, decrease in magnitude and shift to positive potentials once εp is increased. Finally, model predictions are discussed in light of recent experimental data obtained on Nafion® covered Pt(111) electrodes, providing a theoretical framework for the qualitative electroanalysis of these systems.
通过一种解析方法计算了电极/固体聚合物电解质膜/溶液界面处的微分电容和电位分布。该模型考虑了同离子和反离子从溶剂相透过膜的过程以及在固体聚合物电解质膜/溶液界面处离子的分配平衡。通过纳入唐南平衡、空间位阻、离子从水转移到膜孔时的溶剂化能变化以及离子静电相互作用来考虑后一种效应。结果表明,电容-电位曲线中的电容最大值可能由于膜内的酸碱离解过程以及离子与外加电位的总相互作用能的变化而出现。对于膜孔内低介电常数εp的情况,可以得到尖锐的峰值。一旦εp增加,这些峰值会变宽、幅度减小并向正电位移动。最后,根据最近在Nafion®覆盖的Pt(111)电极上获得的实验数据讨论了模型预测结果,为这些系统的定性电分析提供了理论框架。