Suppr超能文献

动态结构变化为蓝/绿藻胆体在暗态和光激活态之间的光致变色提供了基础。

Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states.

机构信息

From the National Magnetic Resonance Facility at Madison, Department of Biochemistry and.

出版信息

J Biol Chem. 2014 Jan 31;289(5):3055-65. doi: 10.1074/jbc.M113.531053. Epub 2013 Dec 11.

Abstract

The phytochrome superfamily of photoreceptors exploits reversible light-driven changes in the bilin chromophore to initiate a variety of signaling cascades. The nature of these alterations and how they impact the protein moiety remain poorly resolved and might include several species-specific routes. Here, we provide a detailed picture of photoconversion for the photosensing cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain from Thermosynechococcus elongatus (Te) PixJ, a member of the cyanobacteriochrome clade. Solution NMR structures of the blue light-absorbing dark state Pb and green light-absorbing photoactivated state Pg, combined with paired crystallographic models, revealed that the bilin and GAF domain dynamically transition via breakage of the C10/Cys-494 thioether bond, opposite rotations of the A and D pyrrole rings, sliding of the bilin in the GAF pocket, and the appearance of an extended region of disorder that includes Cys-494. Changes in GAF domain backbone dynamics were also observed that are likely important for inter-domain signal propagation. Taken together, photoconversion of T. elongatus PixJ from Pb to Pg involves complex structural changes within the GAF domain pocket that transduce light into a mechanical signal, many aspects of which should be relevant to others within the extended phytochrome superfamily.

摘要

光受体的光敏色素超家族利用双氢卟啉发色团可逆的光驱动变化来启动各种信号级联。这些变化的性质以及它们如何影响蛋白质部分仍未得到很好的解决,可能包括几种特定于物种的途径。在这里,我们提供了来自 elongatus Thermosynechococcus 的 cGMP 磷酸二酯酶/腺苷酸环化酶/FhlA(GAF)结构域的光转换的详细图片(Te)PixJ,它是蓝藻视紫红质家族的成员。结合配对晶体模型的蓝光吸收暗态 Pb 和绿光吸收光激活态 Pg 的溶液 NMR 结构表明,双氢卟啉和 GAF 结构域通过 C10/Cys-494 硫醚键的断裂、A 和 D 吡咯环的相对旋转、双氢卟啉在 GAF 口袋中的滑动以及无序区的出现来动态转换扩展区,其中包括 Cys-494。还观察到 GAF 结构域骨架动力学的变化,这对于域间信号传递可能很重要。总之,来自 elongatus Thermosynechococcus 的 PixJ 从 Pb 到 Pg 的光转换涉及 GAF 结构域口袋内的复杂结构变化,将光转化为机械信号,其中许多方面应该与扩展的光敏色素超家族中的其他方面相关。

相似文献

1
Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states.
J Biol Chem. 2014 Jan 31;289(5):3055-65. doi: 10.1074/jbc.M113.531053. Epub 2013 Dec 11.
4
Photoreversible interconversion of a phytochrome photosensory module in the crystalline state.
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):300-307. doi: 10.1073/pnas.1912041116. Epub 2019 Dec 18.
5
Structural basis for the photoconversion of a phytochrome to the activated Pfr form.
Nature. 2010 Jan 14;463(7278):250-4. doi: 10.1038/nature08671.
7
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2024583118.
10
The D-ring, not the A-ring, rotates in Synechococcus OS-B' phytochrome.
J Biol Chem. 2014 Jan 31;289(5):2552-62. doi: 10.1074/jbc.M113.520031. Epub 2013 Dec 10.

引用本文的文献

1
Green/red light-sensing mechanism in the chromatic acclimation photosensor.
Sci Adv. 2024 Jun 14;10(24):eadn8386. doi: 10.1126/sciadv.adn8386. Epub 2024 Jun 12.
2
Cyanobacteriochromes: A Rainbow of Photoreceptors.
Annu Rev Microbiol. 2024 Nov;78(1):61-81. doi: 10.1146/annurev-micro-041522-094613. Epub 2024 Nov 7.
3
The molecular mechanism of light-induced bond formation and breakage in the cyanobacteriochrome TePixJ.
Phys Chem Chem Phys. 2023 Feb 22;25(8):6016-6024. doi: 10.1039/d2cp05856a.
4
Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes.
Photochem Photobiol Sci. 2022 Apr;21(4):471-491. doi: 10.1007/s43630-022-00213-3. Epub 2022 Apr 11.
5
The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.
Chem Rev. 2021 Dec 22;121(24):14906-14956. doi: 10.1021/acs.chemrev.1c00194. Epub 2021 Oct 20.
6
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2024583118.
8
Pump-Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion.
J Phys Chem B. 2021 Jan 14;125(1):202-210. doi: 10.1021/acs.jpcb.0c04822. Epub 2020 Dec 23.
9
A far-red cyanobacteriochrome lineage specific for verdins.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27962-27970. doi: 10.1073/pnas.2016047117. Epub 2020 Oct 26.
10
Photocycle of Cyanobacteriochrome TePixJ.
Biochemistry. 2020 Aug 18;59(32):2909-2915. doi: 10.1021/acs.biochem.0c00382. Epub 2020 Aug 6.

本文引用的文献

1
Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4974-9. doi: 10.1073/pnas.1302909110. Epub 2013 Mar 11.
2
Cyanobacteriochromes in full color and three dimensions.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):806-7. doi: 10.1073/pnas.1220690110. Epub 2013 Jan 3.
3
Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):918-23. doi: 10.1073/pnas.1212098110. Epub 2012 Dec 19.
5
Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes.
Biochemistry. 2012 May 1;51(17):3576-85. doi: 10.1021/bi300171s. Epub 2012 Apr 18.
6
Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily.
Biochemistry. 2012 Feb 21;51(7):1449-63. doi: 10.1021/bi201783j. Epub 2012 Feb 8.
7
Mechanism of regulation of receptor histidine kinases.
Structure. 2012 Jan 11;20(1):56-66. doi: 10.1016/j.str.2011.11.014.
10
Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome.
Nature. 2011 Oct 16;479(7373):428-32. doi: 10.1038/nature10506.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验