Suppr超能文献

心脏手术后的死亡率预测:血乳酸必不可少。

Mortality prediction after cardiac surgery: blood lactate is indispensible.

作者信息

Badreldin Akmal M A, Doerr Fabian, Elsobky Sherif, Brehm Bernhard R, Abul-dahab Mohamed, Lehmann Thomas, Bayer Ole, Wahlers Thorsten, Hekmat Khosro

机构信息

Cardiothoracic Surgery, CardioClinic, Cologne, NRW, Germany.

Faculty of Medicine, Friedrich-Schiller-University of Jena, Erlanger Allee 101, Jena, Germany.

出版信息

Thorac Cardiovasc Surg. 2013 Dec;61(8):708-17. doi: 10.1055/s-0032-1324796. Epub 2013 Mar 11.

Abstract

BACKGROUND

Blood lactate is accepted as a mortality risk marker in intensive care units (ICUs), especially after cardiac surgery. Unfortunately, most of the commonly used ICU risk stratification scoring systems did not include blood lactate as a variable. We hypothesized that blood lactate alone can predict the risk of mortality after cardiac surgery with an accuracy that is comparable to those of other complex models. We therefore evaluated its accuracy at mortality prediction and compared it with that of other widely used complex scoring models statistically.

METHODS

We prospectively collected data of all consecutive adult patients who underwent cardiac surgery between January 1, 2007, and December 31, 2009. By using χ2 statistics, a blood lactate-based scale (LacScale) with only four cutoff points was constructed in a developmental set of patients (January 1, 2007, and May 31, 2008). LacScale included five categories: 0 (≤ 1.7 mmol/L); 1 (1.8-5.9 mmol/L), 2 (6.0-9.3 mmol/L), 3 (9.4-13.3 mmol/L), and 4 (≥ 13.4 mmol/L). Its accuracy at predicting ICU mortality was evaluated in another independent subset of patients (validation set, June 1, 2008, and December 31, 2009) on both study-population level (calibration analysis, overall correct classification) and individual-patient-risk level (discrimination analysis, ROC statistics). The results were then compared with those obtained from other widely used postoperative models in cardiac surgical ICUs (Sequential Organ Failure Assessment [SOFA] score, Simplified Acute Physiology Score II [SAPS II], and Acute Physiology and Chronic Health Evaluation II [APACHE II] score).

RESULTS

ICU mortality was 5.8% in 4,054 patients. LacScale had a reliable calibration in the validation set (2,087 patients). It was highly accurate in predicting ICU mortality with an area under the ROC curve (area under curve [AUC]; discrimination) of 0.88. This AUC was significantly larger than that of all the other models (SOFA 0.83, SAPS II: 0.79 and APACHE II: 0.76) according to DeLong's comparison. Integrating the LacScale in those scores further improved their accuracy by increasing their AUCs (0.88, 0.81, and 0.80, respectively). This improvement was also highly significant.

CONCLUSION

Blood lactate accurately predicts mortality at both individual patient risk and patient cohort levels. Its precision is higher than that of other commonly used "complex" scoring models. The proposed LacScale is a simple and highly reliable model. It can be used (at bedside without electronic calculation) as such or integrated in other models to increase their accuracy.

摘要

背景

血乳酸被公认为重症监护病房(ICU)尤其是心脏手术后的死亡风险标志物。遗憾的是,大多数常用的ICU风险分层评分系统并未将血乳酸作为一个变量纳入。我们假设单独的血乳酸能够预测心脏手术后的死亡风险,其准确性与其他复杂模型相当。因此,我们评估了其在预测死亡率方面的准确性,并在统计学上与其他广泛使用的复杂评分模型进行了比较。

方法

我们前瞻性收集了2007年1月1日至2009年12月31日期间所有连续接受心脏手术的成年患者的数据。通过使用χ2统计量,在一组发育患者(2007年1月1日至2008年5月31日)中构建了一个仅具有四个分界点的基于血乳酸的量表(LacScale)。LacScale包括五个类别:0(≤1.7 mmol/L);1(1.8 - 5.9 mmol/L),2(6.0 - 9.3 mmol/L),3(9.4 - 13.3 mmol/L)和4(≥13.4 mmol/L)。在另一组独立的患者子集(验证集,2008年6月1日至2009年12月31日)中,在研究人群水平(校准分析,总体正确分类)和个体患者风险水平(辨别分析,ROC统计)上评估其预测ICU死亡率的准确性。然后将结果与心脏外科ICU中其他广泛使用的术后模型(序贯器官衰竭评估[SOFA]评分、简化急性生理学评分II[SAPS II]和急性生理学与慢性健康评估II[APACHE II]评分)获得的结果进行比较。

结果

4054例患者的ICU死亡率为5.8%。LacScale在验证集(2087例患者)中具有可靠的校准。它在预测ICU死亡率方面高度准确,ROC曲线下面积(曲线下面积[AUC];辨别力)为0.88。根据德龙比较法,该AUC显著大于所有其他模型(SOFA为0.83,SAPS II为0.79,APACHE II为0.76)。将LacScale纳入这些评分中,通过增加其AUC进一步提高了它们的准确性(分别为0.88、0.81和0.80)。这种提高也非常显著。

结论

血乳酸在个体患者风险和患者队列水平上均能准确预测死亡率。其精确度高于其他常用的“复杂”评分模型。所提出的LacScale是一个简单且高度可靠的模型。它可以直接使用(无需电子计算在床边即可),也可整合到其他模型中以提高其准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验