Shuster Jonathan J, Guo Jennifer D, Skyler Jay S
Department of Health Outcomes and Policy, College of Medicine, University of Florida, Gainesville, FL, 32610, U.S.A..
Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, 32610, U.S.A.
Res Synth Methods. 2012 Mar;3(1):30-50. doi: 10.1002/jrsm.1039.
This article focuses on meta-analysis of low event-rate binomial trials. We introduce two forms of random effects: (1) 'studies at random' (SR), where we assume no more than independence between studies; and (2) 'effects at random' (ER), which forces the effect size distribution to be independent of the study design. On the basis of the summary estimates of proportions, we present both unweighted and study-size weighted methods, which, under SR, target different population parameters. We demonstrate mechanistically that the popular DerSimonian-Laird (DL) method, as DL actually warned in their paper, should never be used in this setting. We conducted a survey of the major cardiovascular literature on low event-rate studies and found that DL using odds ratios or relative risks to be the clear method of choice. We looked at two high profile examples from diabetes and cancer, respectively, where the choice of weighted versus unweighted methods makes a large difference. A large simulation study supports the accuracy of the coverage of our approximate confidence intervals. We recommend that before looking at their data, users should prespecify which target parameter they intend to estimate (weighted vs. unweighted) but estimate the other as a secondary analysis. Copyright © 2012 John Wiley & Sons, Ltd.
本文聚焦于低事件率二项式试验的荟萃分析。我们引入了两种随机效应形式:(1)“研究随机化”(SR),即我们假设研究之间至多具有独立性;以及(2)“效应随机化”(ER),它强制效应量分布独立于研究设计。基于比例的汇总估计,我们提出了未加权和研究规模加权方法,在SR情况下,这些方法针对不同的总体参数。我们从机制上证明,正如DerSimonian - Laird(DL)在其论文中实际所警告的那样,这种情况下绝不应该使用流行的DL方法。我们对主要心血管文献中关于低事件率研究进行了调查,发现使用比值比或相对风险的DL方法是明确的首选方法。我们分别查看了来自糖尿病和癌症领域的两个备受瞩目的例子,其中加权方法与未加权方法的选择产生了很大差异。一项大型模拟研究支持了我们近似置信区间覆盖范围的准确性。我们建议在查看数据之前,用户应预先指定他们打算估计的目标参数(加权与未加权),但将另一个作为次要分析进行估计。版权所有© 2012约翰威立父子有限公司。