Suppr超能文献

使用软件连接器实现基因表达分析工具和数据源的语义集成。

Semantic integration of gene expression analysis tools and data sources using software connectors.

出版信息

BMC Genomics. 2013 Oct 25;14 Suppl 6(Suppl 6):S2. doi: 10.1186/1471-2164-14-S6-S2.

Abstract

BACKGROUND

The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data.

RESULTS

We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data.

CONCLUSIONS

The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.

摘要

背景

基因表达测量的研究和分析是功能基因组学的主要关注点。一旦获得表达数据,生物学家就面临着提取与潜在生物现象相关的(新)知识的任务。为了执行此任务,生物学家通常在可用的基因表达数据集上执行多个分析活动,而不是单个分析活动。将异构工具和数据源集成到一个集成分析环境中代表着一项具有挑战性且容易出错的任务。语义集成使我们能够为集成环境中不同应用程序之间共享的数据赋予明确的含义,从而以语义一致且有意义的方式交换数据。这项工作旨在开发一种基于本体的方法,用于语义集成基因表达分析工具和数据源。所提出的方法依赖于软件连接器来不仅支持对异构数据源的访问,还支持对交换数据定义转换规则。

结果

我们研究了集成计算机系统所涉及的不同挑战,以及软件连接器在这项任务中的作用。我们还研究了许多基因表达技术、分析工具和相关本体,以设计基本的集成场景,并提出基因表达领域的参考本体。然后,我们定义了一些活动和相关指南,以规定如何开展连接器的开发。最后,我们将所提出的方法应用于三个不同的集成场景的构建中,这些场景涉及使用不同的工具来分析不同类型的基因表达数据。

结论

所提出的方法有助于开发能够语义集成不同基因表达分析工具和数据源的连接器。该方法可用于开发支持简单和复杂处理要求的连接器,从而确保从交换数据中准确地进行数据交换和信息解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/154d/3908368/b6f3950bbd6a/1471-2164-14-S6-S2-1.jpg

相似文献

1
Semantic integration of gene expression analysis tools and data sources using software connectors.
BMC Genomics. 2013 Oct 25;14 Suppl 6(Suppl 6):S2. doi: 10.1186/1471-2164-14-S6-S2.
2
Orymold: ontology based gene expression data integration and analysis tool applied to rice.
BMC Bioinformatics. 2009 May 23;10:158. doi: 10.1186/1471-2105-10-158.
3
KaBOB: ontology-based semantic integration of biomedical databases.
BMC Bioinformatics. 2015 Apr 23;16(1):126. doi: 10.1186/s12859-015-0559-3.
5
A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis.
PLoS One. 2015 Jul 24;10(7):e0134011. doi: 10.1371/journal.pone.0134011. eCollection 2015.
7
A method and software framework for enriching private biomedical sources with data from public online repositories.
J Biomed Inform. 2016 Apr;60:177-86. doi: 10.1016/j.jbi.2016.02.004. Epub 2016 Feb 10.
8
OntoDas - a tool for facilitating the construction of complex queries to the Gene Ontology.
BMC Bioinformatics. 2008 Oct 16;9:437. doi: 10.1186/1471-2105-9-437.
9
The Gaggle: an open-source software system for integrating bioinformatics software and data sources.
BMC Bioinformatics. 2006 Mar 28;7:176. doi: 10.1186/1471-2105-7-176.
10
Using Semantic Similarities and csbl.go for Analyzing Microarray Data.
Methods Mol Biol. 2016;1375:105-16. doi: 10.1007/7651_2015_241.

引用本文的文献

1
A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis.
PLoS One. 2015 Jul 24;10(7):e0134011. doi: 10.1371/journal.pone.0134011. eCollection 2015.

本文引用的文献

1
A UML profile for the OBO relation ontology.
BMC Genomics. 2012;13 Suppl 5(Suppl 5):S3. doi: 10.1186/1471-2164-13-S5-S3. Epub 2012 Oct 19.
2
Combining P values to improve classification of differential gene expression in the HTself software.
Genet Mol Res. 2011 Dec 5;10(4):3586-95. doi: 10.4238/2011.December.5.5.
3
GenomicTools: a computational platform for developing high-throughput analytics in genomics.
Bioinformatics. 2012 Jan 15;28(2):282-3. doi: 10.1093/bioinformatics/btr646. Epub 2011 Nov 22.
4
Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks.
Nucleic Acids Res. 2012 Jan;40(Database issue):D866-75. doi: 10.1093/nar/gkr1050. Epub 2011 Nov 16.
5
KEGG for integration and interpretation of large-scale molecular data sets.
Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14. doi: 10.1093/nar/gkr988. Epub 2011 Nov 10.
6
GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences.
PLoS One. 2011;6(10):e25279. doi: 10.1371/journal.pone.0025279. Epub 2011 Oct 6.
7
TAAPP: Tiling Array Analysis Pipeline for Prokaryotes.
Genomics Proteomics Bioinformatics. 2011 Apr;9(1-2):56-62. doi: 10.1016/S1672-0229(11)60008-9.
8
A pipeline for RNA-seq data processing and quality assessment.
Bioinformatics. 2011 Mar 15;27(6):867-9. doi: 10.1093/bioinformatics/btr012. Epub 2011 Jan 13.
10
Semantic integration of data on transcriptional regulation.
Bioinformatics. 2010 Jul 1;26(13):1651-61. doi: 10.1093/bioinformatics/btq231. Epub 2010 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验