Suppr超能文献

GENE-counter:一个用于分析 RNA-Seq 数据以检测基因表达差异的计算流程。

GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences.

机构信息

Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America.

出版信息

PLoS One. 2011;6(10):e25279. doi: 10.1371/journal.pone.0025279. Epub 2011 Oct 6.

Abstract

GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts.

摘要

GENE-counter 是一个完整的基于 Perl 的计算流程,用于分析 RNA-Seq(RNA 测序)数据以进行差异基因表达分析。除了在真核模式生物的转录组研究中使用外,GENE-counter 还适用于没有可用基因组参考序列的原核生物和非模式生物。对于比对,GENE-counter 配置为 CASHX、Bowtie 和 BWA,但用户可以使用任何首选的符合序列比对/映射 (SAM) 的程序。为了分析差异基因表达数据,GENE-counter 可以与基于负二项式分布变体的三个统计软件包中的任何一个一起运行。默认方法是我们基于负二项式分布的过参数化版本开发的新的简单统计测试。GENE-counter 还包括三种用于评估富含基因本体论 (GO) 术语的差异表达特征的方法。结果是透明的,数据系统地存储在 MySQL 关系数据库中,以方便进行额外的分析和质量评估。我们使用下一代测序生成了一个源自拟南芥大量研究的防御反应的小规模 RNA-Seq 数据集,并使用 GENE-counter 处理数据。总的来说,微阵列分析的支持以及来自三个统计软件包中的每一个的观察到的和实质性的重叠结果表明,GENE-counter 非常适合处理小样本量和基因计数高度变化的独特特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d3e/3188579/8672f7d4a2b0/pone.0025279.g001.jpg

相似文献

1
GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences.
PLoS One. 2011;6(10):e25279. doi: 10.1371/journal.pone.0025279. Epub 2011 Oct 6.
2
SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
BMC Bioinformatics. 2016 Feb 4;17:66. doi: 10.1186/s12859-016-0923-y.
5
From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.
PLoS One. 2015 Apr 22;10(4):e0125000. doi: 10.1371/journal.pone.0125000. eCollection 2015.
6
The characteristic direction: a geometrical approach to identify differentially expressed genes.
BMC Bioinformatics. 2014 Mar 21;15:79. doi: 10.1186/1471-2105-15-79.
7
Analysis of RNA-Seq Data Using TopHat and Cufflinks.
Methods Mol Biol. 2016;1374:339-61. doi: 10.1007/978-1-4939-3167-5_18.
10
A Guide to the Chloroplast Transcriptome Analysis Using RNA-Seq.
Methods Mol Biol. 2018;1829:295-313. doi: 10.1007/978-1-4939-8654-5_20.

引用本文的文献

1
Transfer Learning in Multiple Hypothesis Testing.
Entropy (Basel). 2024 Jan 4;26(1):0. doi: 10.3390/e26010049.
2
GeneCloudOmics: A Data Analytic Cloud Platform for High-Throughput Gene Expression Analysis.
Front Bioinform. 2021 Nov 25;1:693836. doi: 10.3389/fbinf.2021.693836. eCollection 2021.
3
RNAdetector: a free user-friendly stand-alone and cloud-based system for RNA-Seq data analysis.
BMC Bioinformatics. 2021 Jun 3;22(1):298. doi: 10.1186/s12859-021-04211-7.
5
Plasmodium vivax readiness to transmit: implication for malaria eradication.
BMC Syst Biol. 2019 Jan 11;13(1):5. doi: 10.1186/s12918-018-0669-4.
6
Optimization of an RNA-Seq Differential Gene Expression Analysis Depending on Biological Replicate Number and Library Size.
Front Plant Sci. 2018 Feb 14;9:108. doi: 10.3389/fpls.2018.00108. eCollection 2018.
7
Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer.
J Nutr Biochem. 2017 Apr;42:72-83. doi: 10.1016/j.jnutbio.2017.01.001. Epub 2017 Jan 12.
8
Characterisation of Early-Life Fecal Microbiota in Susceptible and Healthy Pigs to Post-Weaning Diarrhoea.
PLoS One. 2017 Jan 10;12(1):e0169851. doi: 10.1371/journal.pone.0169851. eCollection 2017.
9
miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis.
Sci Rep. 2016 May 11;6:25749. doi: 10.1038/srep25749.
10
Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach.
J Comput Biol. 2016 Apr;23(4):239-47. doi: 10.1089/cmb.2015.0205. Epub 2016 Mar 7.

本文引用的文献

1
RNA-seq: technical variability and sampling.
BMC Genomics. 2011 Jun 6;12:293. doi: 10.1186/1471-2164-12-293.
2
Computational methods for transcriptome annotation and quantification using RNA-seq.
Nat Methods. 2011 Jun;8(6):469-77. doi: 10.1038/nmeth.1613. Epub 2011 May 27.
3
Full-length transcriptome assembly from RNA-Seq data without a reference genome.
Nat Biotechnol. 2011 May 15;29(7):644-52. doi: 10.1038/nbt.1883.
4
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq.
Genome Res. 2011 Jul;21(7):1160-7. doi: 10.1101/gr.110882.110. Epub 2011 May 4.
5
RNA-sequence analysis of human B-cells.
Genome Res. 2011 Jun;21(6):991-8. doi: 10.1101/gr.116335.110. Epub 2011 May 2.
6
RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture.
ISME J. 2011 Jul;5(7):1133-42. doi: 10.1038/ismej.2011.3. Epub 2011 Feb 17.
7
Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads.
Genome Biol. 2011;12(2):R13. doi: 10.1186/gb-2011-12-2-r13. Epub 2011 Feb 10.
8
Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3' UTRs.
Nat Struct Mol Biol. 2011 Feb;18(2):230-6. doi: 10.1038/nsmb.1975. Epub 2011 Jan 23.
9
A pipeline for RNA-seq data processing and quality assessment.
Bioinformatics. 2011 Mar 15;27(6):867-9. doi: 10.1093/bioinformatics/btr012. Epub 2011 Jan 13.
10
The developmental transcriptome of Drosophila melanogaster.
Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验