Suppr超能文献

组织蛋白酶 K 活性控制小鼠损伤相关的血管修复。

Cathepsin K activity controls injury-related vascular repair in mice.

机构信息

Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.

出版信息

Hypertension. 2014 Mar;63(3):607-15. doi: 10.1161/HYPERTENSIONAHA.113.02141. Epub 2013 Dec 16.

Abstract

Cathepsin K (CatK) is one of the most potent mammalian collagenases. We showed previously the increased expression of CatK in human and animal atherosclerotic lesions. Here, we hypothesized that ablation of CatK mitigates injury-induced neointimal hyperplasia. Male wild-type (CatK(+/+)) and CatK-deficient (CatK(-/-)) mice underwent ligation or a combination of ligation and polyethylene cuff-replacement injuries to the right common carotid artery just proximal to its bifurcation, and they were then processed for morphological and biochemical studies at specific time points. On operative day 28, CatK(-/-) significantly reduced neointimal formation and neovessel formation in both single- and combination-injured arteries compared with the Cat K(+/+) mice. At early time points, CatK(-/-) reduced the lesion macrophage contents and medial smooth muscle cell proliferation, the mRNA levels of monocyte chemoattractant protein-1, toll-like receptor-2, toll-like receptor-4, chemokine ligand-12, and the gelatinolytic activity related to matrix metalloproteinase-2/-9. An aorta-explant assay revealed that smooth muscle cell movement was impaired in the CatK(-/-) mice compared with the CatK(+/+) mice. In addition, the smooth muscle cells and macrophages from CatK(-/-) mice had less invasive ability through a reconstituted basement membrane barrier. This vasculoprotective effect was mimicked by Cat inhibition with trans-epoxysuccinyl-L-leucylamido-{4-guanidino} butane (E64d). These results demonstrate an essential role of CatK in neointimal lesion formation in response to injury, possibly via the reduction of toll-like receptor-2/-4-mediated inflammation and smooth muscle cell proliferation, suggesting a novel therapeutic strategy for the control of endovascular treatment-related restenosis by regulating CatK activity.

摘要

组织蛋白酶 K(CatK)是最有效的哺乳动物胶原酶之一。我们之前曾表明,CatK 在人类和动物动脉粥样硬化病变中的表达增加。在这里,我们假设 CatK 的消融可减轻损伤诱导的新生内膜增生。雄性野生型(CatK(+/+))和 CatK 缺失型(CatK(-/-))小鼠在其分叉前的右侧颈总动脉进行结扎或结扎加聚乙烯袖套更换损伤,然后在特定时间点进行形态学和生化研究。在手术第 28 天,与 Cat K(+/+)小鼠相比,CatK(-/-)小鼠在单一和联合损伤的动脉中明显减少了新生内膜形成和新血管形成。在早期时间点,CatK(-/-)减少了病变巨噬细胞含量和中膜平滑肌细胞增殖,单核细胞趋化蛋白-1、Toll 样受体-2、Toll 样受体-4、趋化因子配体-12 和与基质金属蛋白酶-2/-9 相关的明胶酶活性的 mRNA 水平。主动脉外植体测定显示,与 Cat K(+/+)小鼠相比,CatK(-/-)小鼠的平滑肌细胞运动受损。此外,CatK(-/-)小鼠的平滑肌细胞和巨噬细胞通过重建的基底膜屏障的侵袭能力降低。Cat 抑制剂反式-环氧琥珀酰-L-亮氨酰酰胺基-4-胍基丁烷(E64d)模拟了这种血管保护作用。这些结果表明 CatK 在损伤后新生内膜病变形成中起重要作用,可能通过减少 Toll 样受体-2/-4 介导的炎症和平滑肌细胞增殖来实现,这提示通过调节 CatK 活性来控制血管内治疗相关再狭窄的新治疗策略。

相似文献

1
Cathepsin K activity controls injury-related vascular repair in mice.
Hypertension. 2014 Mar;63(3):607-15. doi: 10.1161/HYPERTENSIONAHA.113.02141. Epub 2013 Dec 16.
3
Cathepsin S Deficiency Mitigated Chronic Stress-Related Neointimal Hyperplasia in Mice.
J Am Heart Assoc. 2019 Jul 16;8(14):e011994. doi: 10.1161/JAHA.119.011994. Epub 2019 Jul 12.
4
Cathepsin K activity controls cardiotoxin-induced skeletal muscle repair in mice.
J Cachexia Sarcopenia Muscle. 2018 Feb;9(1):160-175. doi: 10.1002/jcsm.12248. Epub 2017 Oct 23.
5
Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K-Akt/p-HDAC6 Signaling Pathway.
Arterioscler Thromb Vasc Biol. 2016 Aug;36(8):1549-57. doi: 10.1161/ATVBAHA.115.307110. Epub 2016 Jun 30.
6
Cathepsin K Deficiency Prevents the Aggravated Vascular Remodeling Response to Flow Cessation in ApoE-/- Mice.
PLoS One. 2016 Sep 16;11(9):e0162595. doi: 10.1371/journal.pone.0162595. eCollection 2016.
7
Cathepsin K Deficiency Prevented Kidney Damage and Dysfunction in Response to 5/6 Nephrectomy Injury in Mice With or Without Chronic Stress.
Hypertension. 2022 Aug;79(8):1713-1723. doi: 10.1161/HYPERTENSIONAHA.122.19137. Epub 2022 Jun 21.
9
Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice.
Arterioscler Thromb Vasc Biol. 2012 Jan;32(1):15-23. doi: 10.1161/ATVBAHA.111.235002. Epub 2011 Aug 4.
10
Uncoupling Protein 2 Inhibits Myointimal Hyperplasia in Preclinical Animal Models of Vascular Injury.
J Am Heart Assoc. 2017 Oct 12;6(10):e002641. doi: 10.1161/JAHA.117.006593.

引用本文的文献

2
Molecular Mechanisms Underlying Vascular Remodeling in Hypertension.
Rev Cardiovasc Med. 2024 Feb 20;25(2):72. doi: 10.31083/j.rcm2502072. eCollection 2024 Feb.
4
Co-infection of TYLCV and ToCV increases cathepsin B and promotes ToCV transmission by MED.
Front Microbiol. 2023 Mar 16;14:1107038. doi: 10.3389/fmicb.2023.1107038. eCollection 2023.
5
Cathepsin K: A Versatile Potential Biomarker and Therapeutic Target for Various Cancers.
Curr Oncol. 2022 Aug 22;29(8):5963-5987. doi: 10.3390/curroncol29080471.
6
MED1 Deficiency in Macrophages Accelerates Intimal Hyperplasia via ROS Generation and Inflammation.
Oxid Med Cell Longev. 2021 Nov 22;2021:3010577. doi: 10.1155/2021/3010577. eCollection 2021.
8
Cysteine cathepsins are altered by flow within an engineered microvascular niche.
APL Bioeng. 2020 Nov 4;4(4):046102. doi: 10.1063/5.0023342. eCollection 2020 Dec.
9
Cathepsin K Deficiency Impaired Ischemia-Induced Neovascularization in Aged Mice.
Stem Cells Int. 2020 Jun 30;2020:6938620. doi: 10.1155/2020/6938620. eCollection 2020.
10
PLF-1 (Proliferin-1) Modulates Smooth Muscle Cell Proliferation and Development of Experimental Intimal Hyperplasia.
J Am Heart Assoc. 2019 Dec 17;8(24):e005886. doi: 10.1161/JAHA.117.005886. Epub 2019 Dec 16.

本文引用的文献

1
2
Mechanisms of acute coronary syndromes and their implications for therapy.
N Engl J Med. 2013 May 23;368(21):2004-13. doi: 10.1056/NEJMra1216063.
3
Circulating cathepsin K as a potential novel biomarker of coronary artery disease.
Atherosclerosis. 2013 May;228(1):211-6. doi: 10.1016/j.atherosclerosis.2013.01.004. Epub 2013 Jan 13.
4
Role for cysteine protease cathepsins in heart disease: focus on biology and mechanisms with clinical implication.
Circulation. 2012 Mar 27;125(12):1551-62. doi: 10.1161/CIRCULATIONAHA.111.066712.
5
Cysteine protease cathepsins in atherosclerosis-based vascular disease and its complications.
Hypertension. 2011 Dec;58(6):978-86. doi: 10.1161/HYPERTENSIONAHA.111.180935. Epub 2011 Oct 10.
6
Osteoarthritic change is delayed in a Ctsk-knockout mouse model of osteoarthritis.
Arthritis Rheum. 2012 Feb;64(2):454-64. doi: 10.1002/art.33398.
7
Cathepsin L activity is essential to elastase perfusion-induced abdominal aortic aneurysms in mice.
Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2500-8. doi: 10.1161/ATVBAHA.111.230201.
8
Role of various proteases in cardiac remodeling and progression of heart failure.
Heart Fail Rev. 2012 May;17(3):395-409. doi: 10.1007/s10741-011-9269-8.
9
Angiotensin type 1 receptor blocker reduces intimal neovascularization and plaque growth in apolipoprotein E-deficient mice.
Hypertension. 2011 May;57(5):981-9. doi: 10.1161/HYPERTENSIONAHA.110.168385. Epub 2011 Apr 4.
10
The vascular repair process after injury of the carotid artery is regulated by IL-1RI and MyD88 signalling.
Cardiovasc Res. 2011 Jul 15;91(2):350-7. doi: 10.1093/cvr/cvr075. Epub 2011 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验