Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
Nanoscale. 2014;6(3):1725-31. doi: 10.1039/c3nr05551e.
Mn₂O₃ has been demonstrated to be a promising electrode material for lithium-ion batteries. Thus, the fabrication of Mn₂O₃ nanomaterials with high specific capacity and cycling stability is greatly desired. Here we report a simple but effective method to synthesis Mn₂O₃ nanomaterials from a Mn(OH)₂ precursor, which was prepared from manganese acetate in ethylene glycol and water at 180 °C for 12 h. The morphology and sheet thickness of Mn(OH)₂ precursor could be tuned by controlling the ethylene glycol/H₂O volume ratio, resulting in a further tunable morphology and sheet thickness of the porous Mn₂O₃ nanomaterials. In the electrochemical tests the prepared Mn₂O₃ nanomaterials, with the porous architecture and thin thickness exhibited a high and stable reversible capacity, indicating that both small thickness and porous sheets structure are crucial for improving the electrochemical performance of Mn₂O₃ in terms of specific capacity and stability.
MnO3 已被证明是一种很有前途的锂离子电池电极材料。因此,制备具有高比容量和循环稳定性的 MnO3 纳米材料是非常需要的。在这里,我们报告了一种简单但有效的方法,从 Mn(OH)2 前体合成 MnO3 纳米材料,Mn(OH)2 前体是通过在乙二醇和水中的醋酸锰在 180°C 下反应 12 小时制得的。通过控制乙二醇/H2O 的体积比可以调节 Mn(OH)2 前体的形态和片层厚度,从而进一步调节多孔 MnO3 纳米材料的形态和片层厚度。在电化学测试中,所制备的具有多孔结构和薄厚度的 MnO3 纳米材料表现出高且稳定的可逆容量,这表明小厚度和多孔片层结构对于提高 MnO3 的电化学性能(比容量和稳定性)至关重要。