Suppr超能文献

MnO@碳核壳纳米线作为锂离子电池稳定的高性能阳极。

MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.

机构信息

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.

出版信息

Chemistry. 2013 Aug 19;19(34):11310-9. doi: 10.1002/chem.201203553. Epub 2013 Jul 10.

Abstract

A facile method is presented for the large-scale preparation of rationally designed mesocrystalline MnO@carbon core-shell nanowires with a jointed appearance. The nanostructures have a unique arrangement of internally encapsulated highly oriented and interconnected MnO nanorods and graphitized carbon layers forming an external coating. Based on a comparison and analysis of the crystal structures of MnOOH, Mn2 O3 , and MnO@C, we propose a sequential topotactic transformation of the corresponding precursors to the products. Very interestingly, the individual mesoporous single-crystalline MnO nanorods are strongly interconnected and maintain the same crystallographic orientation, which is a typical feature of mesocrystals. When tested for their applicability to Li-ion batteries (LIB), the MnO@carbon core-shell nanowires showed excellent capacity retention, superior cycling performance, and high rate capability. Specifically, the MnO@carbon core-shell nanostructures could deliver reversible capacities as high as 801 mA h g(-1) at a high current density of 500 mA g(-1) , with excellent electrochemical stability after testing over 200 cycles, indicating their potential application in LIBs. The remarkable electrochemical performance can mainly be attributed to the highly uniform carbon layer around the MnO nanowires, which is not only effective in buffering the structural strain and volume variations of anodes during repeated electrochemical reactions, but also greatly enhances the conductivity of the electrode material. Our results confirm the feasibility of using these rationally designed composite materials for practical applications. The present strategy is simple but very effective, and appears to be sufficiently versatile to be extended to other high-capacity electrode materials with large volume variations and low electrical conductivities.

摘要

一种简便的方法可用于大规模制备具有节状外观的合理设计的介晶 MnO@碳核壳纳米线。这些纳米结构具有独特的内部封装高度取向和互连的 MnO 纳米棒以及石墨化碳层的排列,形成外部涂层。通过对 MnOOH、Mn2O3 和 MnO@C 的晶体结构进行比较和分析,我们提出了相应前驱体到产物的顺序拓扑转变。非常有趣的是,单独的介孔单晶 MnO 纳米棒强烈相互连接并保持相同的晶体取向,这是介晶的典型特征。当将其应用于锂离子电池 (LIB) 进行测试时,MnO@碳核壳纳米线表现出优异的容量保持率、卓越的循环性能和高倍率性能。具体而言,MnO@碳核壳纳米结构在 500 mA g-1的高电流密度下可提供高达 801 mA h g-1的可逆容量,经过 200 次循环测试后具有出色的电化学稳定性,表明其在 LIB 中的潜在应用。显著的电化学性能主要归因于 MnO 纳米线周围高度均匀的碳层,它不仅有效地缓冲了在重复电化学反应中阳极的结构应变和体积变化,而且极大地提高了电极材料的导电性。我们的结果证实了使用这些合理设计的复合材料进行实际应用的可行性。该策略简单但非常有效,并且似乎足够通用,可以扩展到其他具有大体积变化和低电导率的高容量电极材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验