Ma Yuxin, Feng Qiqi, Ouyang Lisi, Mu Shuhua, Liu Bingbing, Li Youlan, Chen Si, Lei Wanlong
Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, People's Republic of China.
Cell Mol Neurobiol. 2014 Apr;34(3):351-9. doi: 10.1007/s10571-013-0019-4. Epub 2013 Dec 17.
The striatum plays a fundamental role in sensorimotor and cognitive functions of the body, and different sub-regions control different physiological functions. The striatal interneurons play important roles in the striatal function, yet their specific functions are not clearly elucidated so far. The present study aimed to investigate the morphological properties of the GABAergic interneurons expressing neuropeptide Y (NPY), calretinin (Cr), and parvalbumin (Parv) as well as the cholinergic interneurons expressing choline acetyltransferase (ChAT) in the striatal dorsolateral (DL) and ventromedial (VM) regions of rats using immunohistochemistry and Western blot. The present results showed that the somatic size of Cr+ was the smallest, while ChAT+ was the largest among the four types of interneurons. There was no regional difference in neuronal somatic size of all types of interneurons. Cr+ and Parv+ neurons were differentially distributed in the striatum. Moreover, Parv+ had the longest primary dendrites in the DL region, while NPY+ had the longest ones in the VM region of striatum. But there was regional difference in the length of primary dendrites of Parv. The numbers of primary dendrites of Parv+ were the largest in both DL and VM regions of striatum. Both Cr+ and Parv+ primary dendrites displayed regional difference in the striatum. Western blot further confirmed the regional differences in the protein expression level of Cr and Parv. Hence, the present study indicates that GABAergic and cholinergic interneurons might be involved in different physiological functions based on their morphological and distributional diversity in different regions of the rat striatum.
纹状体在身体的感觉运动和认知功能中发挥着重要作用,不同的亚区域控制着不同的生理功能。纹状体中间神经元在纹状体功能中起重要作用,但其具体功能迄今尚未完全阐明。本研究旨在利用免疫组织化学和蛋白质印迹法,研究大鼠纹状体背外侧(DL)和腹内侧(VM)区域中表达神经肽Y(NPY)、钙视网膜蛋白(Cr)和小白蛋白(Parv)的γ-氨基丁酸能中间神经元以及表达胆碱乙酰转移酶(ChAT)的胆碱能中间神经元的形态学特性。目前的结果表明,在这四种类型的中间神经元中,Cr+的胞体最小,而ChAT+的胞体最大。所有类型中间神经元的神经元胞体大小均无区域差异。Cr+和Parv+神经元在纹状体中分布不同。此外,Parv+在纹状体DL区域的初级树突最长,而NPY+在纹状体VM区域的初级树突最长。但Parv初级树突的长度存在区域差异。Parv+在纹状体的DL和VM区域的初级树突数量最多。Cr+和Parv+的初级树突在纹状体中均表现出区域差异。蛋白质印迹法进一步证实了Cr和Parv蛋白表达水平的区域差异。因此,本研究表明,γ-氨基丁酸能和胆碱能中间神经元可能因其在大鼠纹状体不同区域的形态和分布多样性而参与不同的生理功能。