Suppr超能文献

大鼠背外侧和腹内侧纹状体区域中γ-氨基丁酸能和胆碱能中间神经元的形态多样性

Morphological diversity of GABAergic and cholinergic interneurons in the striatal dorsolateral and ventromedial regions of rats.

作者信息

Ma Yuxin, Feng Qiqi, Ouyang Lisi, Mu Shuhua, Liu Bingbing, Li Youlan, Chen Si, Lei Wanlong

机构信息

Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, People's Republic of China.

出版信息

Cell Mol Neurobiol. 2014 Apr;34(3):351-9. doi: 10.1007/s10571-013-0019-4. Epub 2013 Dec 17.

Abstract

The striatum plays a fundamental role in sensorimotor and cognitive functions of the body, and different sub-regions control different physiological functions. The striatal interneurons play important roles in the striatal function, yet their specific functions are not clearly elucidated so far. The present study aimed to investigate the morphological properties of the GABAergic interneurons expressing neuropeptide Y (NPY), calretinin (Cr), and parvalbumin (Parv) as well as the cholinergic interneurons expressing choline acetyltransferase (ChAT) in the striatal dorsolateral (DL) and ventromedial (VM) regions of rats using immunohistochemistry and Western blot. The present results showed that the somatic size of Cr+ was the smallest, while ChAT+ was the largest among the four types of interneurons. There was no regional difference in neuronal somatic size of all types of interneurons. Cr+ and Parv+ neurons were differentially distributed in the striatum. Moreover, Parv+ had the longest primary dendrites in the DL region, while NPY+ had the longest ones in the VM region of striatum. But there was regional difference in the length of primary dendrites of Parv. The numbers of primary dendrites of Parv+ were the largest in both DL and VM regions of striatum. Both Cr+ and Parv+ primary dendrites displayed regional difference in the striatum. Western blot further confirmed the regional differences in the protein expression level of Cr and Parv. Hence, the present study indicates that GABAergic and cholinergic interneurons might be involved in different physiological functions based on their morphological and distributional diversity in different regions of the rat striatum.

摘要

纹状体在身体的感觉运动和认知功能中发挥着重要作用,不同的亚区域控制着不同的生理功能。纹状体中间神经元在纹状体功能中起重要作用,但其具体功能迄今尚未完全阐明。本研究旨在利用免疫组织化学和蛋白质印迹法,研究大鼠纹状体背外侧(DL)和腹内侧(VM)区域中表达神经肽Y(NPY)、钙视网膜蛋白(Cr)和小白蛋白(Parv)的γ-氨基丁酸能中间神经元以及表达胆碱乙酰转移酶(ChAT)的胆碱能中间神经元的形态学特性。目前的结果表明,在这四种类型的中间神经元中,Cr+的胞体最小,而ChAT+的胞体最大。所有类型中间神经元的神经元胞体大小均无区域差异。Cr+和Parv+神经元在纹状体中分布不同。此外,Parv+在纹状体DL区域的初级树突最长,而NPY+在纹状体VM区域的初级树突最长。但Parv初级树突的长度存在区域差异。Parv+在纹状体的DL和VM区域的初级树突数量最多。Cr+和Parv+的初级树突在纹状体中均表现出区域差异。蛋白质印迹法进一步证实了Cr和Parv蛋白表达水平的区域差异。因此,本研究表明,γ-氨基丁酸能和胆碱能中间神经元可能因其在大鼠纹状体不同区域的形态和分布多样性而参与不同的生理功能。

相似文献

1
Morphological diversity of GABAergic and cholinergic interneurons in the striatal dorsolateral and ventromedial regions of rats.
Cell Mol Neurobiol. 2014 Apr;34(3):351-9. doi: 10.1007/s10571-013-0019-4. Epub 2013 Dec 17.
2
Specific reactions of different striatal neuron types in morphology induced by quinolinic acid in rats.
PLoS One. 2014 Mar 14;9(3):e91512. doi: 10.1371/journal.pone.0091512. eCollection 2014.
3
Morphological Study of the Cortical and Thalamic Glutamatergic Synaptic Inputs of Striatal Parvalbumin Interneurons in Rats.
Neurochem Res. 2021 Jul;46(7):1659-1673. doi: 10.1007/s11064-021-03302-4. Epub 2021 Mar 26.
4
Increased GABAergic transmission in neuropeptide Y-expressing neurons in the dopamine-depleted murine striatum.
J Neurophysiol. 2020 Apr 1;123(4):1496-1503. doi: 10.1152/jn.00059.2020. Epub 2020 Mar 11.
8
Neostriatal GABAergic Interneurons Mediate Cholinergic Inhibition of Spiny Projection Neurons.
J Neurosci. 2016 Sep 7;36(36):9505-11. doi: 10.1523/JNEUROSCI.0466-16.2016.
9
Structural and molecular heterogeneity of calretinin-expressing interneurons in the rodent and primate striatum.
J Comp Neurol. 2018 Apr 1;526(5):877-898. doi: 10.1002/cne.24373. Epub 2017 Dec 21.
10
Melatonin ameliorates injury and specific responses of ischemic striatal neurons in rats.
J Histochem Cytochem. 2013 Aug;61(8):591-605. doi: 10.1369/0022155413492159. Epub 2013 May 16.

引用本文的文献

1
A neural tract tracing study on synaptic connections for cortical glutamatergic terminals and cervical spinal calretinin neurons in rats.
Front Neural Circuits. 2023 Apr 28;17:1086873. doi: 10.3389/fncir.2023.1086873. eCollection 2023.
2
Binge alcohol drinking alters the differential control of cholinergic interneurons over nucleus accumbens D1 and D2 medium spiny neurons.
Front Cell Neurosci. 2022 Dec 15;16:1010121. doi: 10.3389/fncel.2022.1010121. eCollection 2022.
3
Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking.
J Neurosci Res. 2020 Jun;98(6):1046-1069. doi: 10.1002/jnr.24587. Epub 2020 Feb 13.
4
Partial decortication ameliorates dopamine depletion‑induced striatal neuron lesions in rats.
Int J Mol Med. 2019 Oct;44(4):1414-1424. doi: 10.3892/ijmm.2019.4288. Epub 2019 Jul 25.
6
Cellular and Subcellular Localization of Endoplasmic Reticulum Chaperone GRP78 Following Transient Focal Cerebral Ischemia in Rats.
Neurochem Res. 2018 Jul;43(7):1348-1362. doi: 10.1007/s11064-018-2550-7. Epub 2018 May 17.
7
A Comparative Study of Three Interneuron Types in the Rat Spinal Cord.
PLoS One. 2016 Sep 22;11(9):e0162969. doi: 10.1371/journal.pone.0162969. eCollection 2016.

本文引用的文献

1
Melatonin ameliorates injury and specific responses of ischemic striatal neurons in rats.
J Histochem Cytochem. 2013 Aug;61(8):591-605. doi: 10.1369/0022155413492159. Epub 2013 May 16.
2
Investigating striatal function through cell-type-specific manipulations.
Neuroscience. 2011 Dec 15;198:19-26. doi: 10.1016/j.neuroscience.2011.08.018. Epub 2011 Aug 12.
3
Preferential interneuron survival in the transition zone of 3-NP-induced striatal injury in rats.
J Neurosci Res. 2011 May;89(5):744-54. doi: 10.1002/jnr.22591. Epub 2011 Feb 17.
4
Functional connectome of the striatal medium spiny neuron.
J Neurosci. 2011 Jan 26;31(4):1183-92. doi: 10.1523/JNEUROSCI.3833-10.2011.
5
Spike-timing dependent plasticity in striatal interneurons.
Neuropharmacology. 2011 Apr;60(5):780-8. doi: 10.1016/j.neuropharm.2011.01.023. Epub 2011 Jan 22.
6
Heterogeneity and diversity of striatal GABAergic interneurons.
Front Neuroanat. 2010 Dec 29;4:150. doi: 10.3389/fnana.2010.00150. eCollection 2010.
7
Estimation of nuclear population from microtome sections.
Anat Rec. 1946 Feb;94:239-47. doi: 10.1002/ar.1090940210.
8
Immunohistochemical localization of AMPA-type glutamate receptor subunits in the striatum of rhesus monkey.
Brain Res. 2010 Jul 16;1344:104-23. doi: 10.1016/j.brainres.2010.05.003. Epub 2010 May 9.
9
Functional diversity and specificity of neostriatal interneurons.
Curr Opin Neurobiol. 2004 Dec;14(6):685-92. doi: 10.1016/j.conb.2004.10.003.
10
Putting a spin on the dorsal-ventral divide of the striatum.
Trends Neurosci. 2004 Aug;27(8):468-74. doi: 10.1016/j.tins.2004.06.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验