The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.
J Phys Chem B. 2014 Jan 9;118(1):278-86. doi: 10.1021/jp410446d. Epub 2013 Dec 27.
The "Eigen cation", H3O+(H2O)3, is the most prevalent protonated water structure in the liquid phase and the most stable gas-phase isomer of the H+(H2O)4 cluster. Nevertheless, its 50 K argon predissociation vibrational spectrum contains unexplainable low frequency peak(s). We have simulated the IR spectra of 10 gas-phase H+(H2O)4 isomers, that include zero to three argon ligands, using dipole autocorrelation functions from ab initio molecular dynamics with the CP2K software. We have also tested the effect of elevated temperature and dispersion correction. The Eigen isomers describe well the high frequency portion of the spectrum but do not agree with experiment below 2000 cm(-1). Most notably, they completely lack the “proton transfer bands” observed at 1050 and 1750 cm(-1), which characterize Zundel-type (H5O2+) isomers. In contrast, linear isomers with a Zundel core, although not the lowest in energy, show very good agreement with experiment, particularly at low frequencies. Peak assignments made with partial velocity autocorrelation functions verify that the 1750 cm(-1) band does not originate with the Eigen isomer but is rather due to coupled proton transfer/water bend in the Zundel isomer.
“Eigen 阳离子”,H3O+(H2O)3,是液相中最常见的质子化水结构,也是 H+(H2O)4 团簇的最稳定气相异构体。然而,其 50 K 氩预解离振动光谱中存在无法解释的低频峰。我们使用 CP2K 软件中的从头算分子动力学的偶极自相关函数,模拟了 10 种气相 H+(H2O)4 异构体的红外光谱,其中包括零到三个氩配体。我们还测试了升高温度和色散校正的影响。Eigen 异构体很好地描述了光谱的高频部分,但在低于 2000 cm(-1)时与实验不符。最值得注意的是,它们完全缺乏在 1050 和 1750 cm(-1)处观察到的“质子转移带”,这些带特征是 Zundel 型(H5O2+)异构体。相比之下,具有 Zundel 核的线性异构体,尽管能量不是最低的,但与实验非常吻合,特别是在低频时。使用部分速度自相关函数进行的峰分配验证了 1750 cm(-1)带不是源于 Eigen 异构体,而是归因于 Zundel 异构体中的耦合质子转移/水弯曲。