WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea).
ChemSusChem. 2014 Feb;7(2):501-9. doi: 10.1002/cssc.201300915. Epub 2013 Dec 17.
Among ternary oxides, Zn2 SnO4 (ZSO) is considered for dye-sensitized solar cells (DSSCs) because of its wide bandgap, high optical transmittance, and high electrical conductivity. However, ZSO-based DSSCs have a poor performance record owing largely to the absence of systematic efforts to enhance their performance. Herein, general strategies are proposed to improve the performance of ZSO-based DSSCs involving interfacial engineering/modification of the photoanode. A conformal ZSO thin film (blocking layer) deposited at the fluorine-doped tin oxide-electrolyte interface by pulsed laser deposition suppressed the back-electron transfer effectively while maintaining a high optical transmittance, which resulted in a 22 % improvement in the short-circuit photocurrent density. Surface modification of ZSO nanoparticles (NPs) resulted in an ultrathin ZnO shell layer, a 9 % improvement in the open-circuit voltage, and a 4 % improvement in the fill factor because of the reduced electron recombination at the ZSO NPs-electrolyte interface. The ZSO-based DSSCs exhibited a faster charge injection and electron transport than their TiO2 -based counterparts, and their superior properties were not inhibited by the ZnO shell layer, which indicates their feasibility for highly efficient DSSCs. Each interfacial engineering strategy could be applied to the ZSO-based DSSC independently to lead to an improved conversion efficiency of 6 %, a very high conversion efficiency for a non-TiO2 based DSSC.
在三元氧化物中,Zn2 SnO4(ZSO)因其宽带隙、高光透过率和高导电性而被认为可用于染料敏化太阳能电池(DSSC)。然而,由于缺乏系统地提高其性能的努力,基于 ZSO 的 DSSC 的性能记录不佳。本文提出了一些一般性策略来提高基于 ZSO 的 DSSC 的性能,涉及到对光电阳极的界面工程/修饰。通过脉冲激光沉积在掺氟氧化锡-电解质界面上沉积的共形 ZSO 薄膜(阻挡层)有效地抑制了反向电子转移,同时保持了高光透过率,这导致短路光电流密度提高了 22%。ZSO 纳米粒子(NPs)的表面修饰导致了超薄 ZnO 壳层,开路电压提高了 9%,填充因子提高了 4%,这是由于 ZSO NPs-电解质界面处的电子复合减少。基于 ZSO 的 DSSC 表现出比基于 TiO2 的 DSSC 更快的电荷注入和电子传输,其优越的性能不会受到 ZnO 壳层的抑制,这表明它们适用于高效的 DSSC。每个界面工程策略都可以独立应用于基于 ZSO 的 DSSC 中,从而使转换效率提高 6%,这是非常高的非 TiO2 基于 DSSC 的转换效率。