Department of Electronic Engineering, University of Valencia, Avda. de la Universitat, s/n, Burjassot 46100, Spain.
Sensors (Basel). 2013 Dec 17;13(12):17516-33. doi: 10.3390/s131217516.
Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Z(t)(JF) is obtained considering it as the relationship between sensor output voltage and input sensing current, Z(t)(jf)= V(o, sensor)(jf)/I(sensor)(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.
分数阶微积分是指在特定函数上应用非整数阶导数和积分。在电力电子领域,分数滤波器的传递函数不仅依赖于滤波器阶数 n,而且还依赖于分数阶 α,这是大量系统的一个例子,其输入-输出行为可以通过分数行为更准确地建模。为了达到这一目的,本工作展示了一系列基于不同自旋电子输运机制的电流传感器的交流大信号频率响应的实验结果。通过使用交流特性测试设置,传感器的跨导函数 Z(t)(JF)可以得到,它被认为是传感器输出电压和输入传感电流之间的关系,Z(t)(jf)= V(o, sensor)(jf)/I(sensor)(jf)。研究已经扩展到各种基于不同技术的磁阻传感器,如各向异性磁阻 (AMR)、巨磁阻 (GMR)、自旋阀 (GMR-SV) 和隧道磁阻 (TMR)。所得的建模结果显示了两种主要的行为,即低通和逆低通,分数指数与经典整数响应不同。具有内部磁化的 TMR 技术提供了最佳的动态和灵敏度特性,为开发实际的工业应用开辟了道路。