Vörös Judit, Urbanek Annika, Rautureau Gilles Jean Philippe, O'Connor Maggie, Fisher Henry C, Ashcroft Alison E, Ferguson Neil
School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
J Virol. 2014 Mar;88(5):2584-99. doi: 10.1128/JVI.02575-13. Epub 2013 Dec 18.
Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies--broad-spectrum antivirals--are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of β-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV.
The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in Escherichia coli and also methods for purifying them in soluble forms that have activity in vitro. We also present the first structural and biophysical characterizations of hPOL. Our work paves the way for new insights into hPOL structure and function, which should assist the discovery of novel antivirals for HBV.
乙型肝炎病毒(HBV)是一种主要的人类病原体,每年导致严重的肝脏疾病和60万人死亡。治疗慢性HBV感染的批准疗法通常针对多功能病毒聚合酶(hPOL)。不幸的是,这些疗法——广谱抗病毒药物——并非通用的治愈方法,有副作用且会导致病毒耐药性。虽然hPOL仍然是一个有吸引力的治疗靶点,但众所周知,以适合结构研究的产量以可溶形式表达和纯化它非常困难。因此,不存在hPOL的经验性结构数据,这阻碍了针对HBV的药物化学和合理先导化合物发现工作。在此,我们提出了一种在大肠杆菌中高效过表达重组hPOL结构域的策略,以高产量纯化它们并解决其已知的聚集倾向。这使我们能够对hPOL结构域进行首次结构和生物物理表征。无辅基hPOL结构域主要采用α螺旋结构,含有少量β折叠结构。我们的重组材料在体外表现出金属依赖性逆转录酶活性,金属结合调节hPOL结构。钙黄绿素橙2RS是一种抑制鸭HBV POL活性的小分子,也抑制了重组hPOL的体外引发活性。我们的工作为hPOL的结构和生物物理表征铺平了道路,应该有助于HBV的高通量先导化合物发现。
人类乙型肝炎病毒的病毒聚合酶(hPOL)是一个经过充分验证的治疗靶点。然而,重组hPOL因极难在适合通常在药物发现计划中起重要作用的结构研究的产量下以可溶、活性形式表达而声名狼藉。这阻碍了急需的HBV新型抗病毒药物的开发。然而,我们已经解决了这个问题,并在此报告在大肠杆菌中表达重组hPOL结构域的程序以及以具有体外活性的可溶形式纯化它们的方法。我们还展示了hPOL的首次结构和生物物理表征。我们的工作为深入了解hPOL的结构和功能铺平了道路,这应该有助于发现HBV的新型抗病毒药物。