Clark Daniel N, Flanagan John M, Hu Jianming
Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
J Virol. 2017 Jan 18;91(3). doi: 10.1128/JVI.01785-16. Print 2017 Feb 1.
Hepatitis B virus (HBV) encodes a multifunction reverse transcriptase or polymerase (P), which is composed of several domains. The terminal protein (TP) domain is unique to HBV and related hepadnaviruses and is required for specifically binding to the viral pregenomic RNA (pgRNA). Subsequently, the TP domain is necessary for pgRNA packaging into viral nucleocapsids and the initiation of viral reverse transcription for conversion of the pgRNA to viral DNA. Uniquely, the HBV P protein initiates reverse transcription via a protein priming mechanism using the TP domain as a primer. No structural homologs or high-resolution structure exists for the TP domain. Secondary structure prediction identified three disordered loops in TP with highly conserved sequences. A meta-analysis of mutagenesis studies indicated these predicted loops are almost exclusively where functionally important residues are located. Newly constructed TP mutations revealed a priming loop in TP which plays a specific role in protein-primed DNA synthesis beyond simply harboring the site of priming. Substitutions of potential sites of phosphorylation surrounding the priming site demonstrated that these residues are involved in interactions critical for priming but are unlikely to be phosphorylated during viral replication. Furthermore, the first 13 and 66 TP residues were shown to be dispensable for protein priming and pgRNA binding, respectively. Combining current and previous mutagenesis work with sequence analysis has increased our understanding of TP structure and functions by mapping specific functions to distinct predicted secondary structures and will facilitate antiviral targeting of this unique domain.
HBV is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. One important feature of this virus is its polymerase, the enzyme used to create the DNA genome from a specific viral RNA by reverse transcription. One region of this polymerase, the TP domain, is required for association with the viral RNA and production of the DNA genome. Targeting the TP domain for antiviral development is difficult due to the lack of homology to other proteins and high-resolution structure. This study mapped the TP functions according to predicted secondary structure, where it folds into alpha helices or unstructured loops. Three predicted loops were found to be the most important regions functionally and the most conserved evolutionarily. Identification of these functional subdomains in TP will facilitate its targeting for antiviral development.
乙型肝炎病毒(HBV)编码一种多功能逆转录酶或聚合酶(P),它由几个结构域组成。末端蛋白(TP)结构域是HBV及相关嗜肝DNA病毒所特有的,是特异性结合病毒前基因组RNA(pgRNA)所必需的。随后,TP结构域对于将pgRNA包装到病毒核衣壳以及启动病毒逆转录以将pgRNA转化为病毒DNA是必需的。独特的是,HBV P蛋白通过使用TP结构域作为引物的蛋白质引发机制启动逆转录。TP结构域不存在结构同源物或高分辨率结构。二级结构预测在TP中鉴定出三个具有高度保守序列的无序环。对诱变研究的荟萃分析表明,这些预测的环几乎完全是功能重要残基所在的位置。新构建的TP突变揭示了TP中的一个引发环,它在蛋白质引发的DNA合成中发挥特定作用,而不仅仅是简单地包含引发位点。引发位点周围潜在磷酸化位点的替换表明,这些残基参与了对引发至关重要的相互作用,但在病毒复制过程中不太可能被磷酸化。此外,已表明TP的前13个和66个残基分别对于蛋白质引发和pgRNA结合是可有可无的。将当前和以前的诱变工作与序列分析相结合,通过将特定功能映射到不同的预测二级结构上,增加了我们对TP结构和功能的理解,并将促进对这一独特结构域的抗病毒靶向。
HBV是病毒性肝炎、肝硬化和肝细胞癌的主要病因。这种病毒的一个重要特征是其聚合酶,该酶用于通过逆转录从特定病毒RNA创建DNA基因组。该聚合酶的一个区域,即TP结构域,是与病毒RNA结合和产生DNA基因组所必需的。由于与其他蛋白质缺乏同源性且缺乏高分辨率结构,针对TP结构域进行抗病毒开发很困难。本研究根据预测的二级结构绘制了TP的功能图,在该二级结构中它折叠成α螺旋或无结构环。发现三个预测的环在功能上是最重要的区域,在进化上也是最保守的。鉴定TP中的这些功能亚结构域将有助于其在抗病毒开发中的靶向作用。