Suppr超能文献

饮食创新在新生代推动了反刍动物的多样化。

Dietary innovations spurred the diversification of ruminants during the Caenozoic.

机构信息

Departmento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, , Pinar 25, 28006 Madrid, Spain, Department of Biological Sciences, Simon Fraser University, , 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada, IRMACS, Simon Fraser University, , 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada, Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, , José Antonio Novais 2, Madrid 28040, Spain, Department of Zoology, University of British Columbia, , Vancouver, British Columbia V6T 1Z4, Canada, Department of Biological Sciences, Macquarie University, , Sydney, New South Wales 2109, Australia, Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), , José Antonio Novais 2, Madrid 28040, Spain, Departament de Faunes del Neogen i Quaternari, Institut Català de Paleontologia Miquel Crusafont, Edifici ICP, Universitat Autònoma de Barcelona, , Cerdanyola del Vallès 08193, Spain, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, , Pedro Cerbuna 12, Zaragoza 50009, Spain.

出版信息

Proc Biol Sci. 2013 Dec 18;281(1776):20132746. doi: 10.1098/rspb.2013.2746. Print 2014 Feb 7.

Abstract

Global climate shifts and ecological flexibility are two major factors that may affect rates of speciation and extinction across clades. Here, we connect past climate to changes in diet and diversification dynamics of ruminant mammals. Using novel versions of Multi-State Speciation and Extinction models, we explore the most likely scenarios for evolutionary transitions among diets in this clade and ask whether ruminant lineages with different feeding styles (browsing, grazing and mixed feeding) underwent differential rates of diversification concomitant with global temperature change. The best model of trait change had transitions from browsers to grazers via mixed feeding, with appreciable rates of transition to and from grazing and mixed feeding. Diversification rates in mixed-feeder and grazer lineages tracked the palaeotemperature curve, exhibiting higher rates during the Miocene thermal maxima. The origination of facultative mixed diet and grazing states may have triggered two adaptive radiations--one during the Oligocene-Miocene transition and the other during Middle-to-Late Miocene. Our estimate of mixed diets for basal lineages of both bovids and cervids is congruent with fossil evidence, while the reconstruction of browser ancestors for some impoverished clades--Giraffidae and Tragulidae--is not. Our results offer model-based neontological support to previous palaeontological findings and fossil-based hypothesis highlighting the importance of dietary innovations--especially mixed feeding--in the success of ruminants during the Neogene.

摘要

全球气候变迁和生态弹性是两个可能影响各演化支物种形成和灭绝速率的主要因素。在此,我们将过去的气候与反刍哺乳动物的饮食和多样化动态变化联系起来。我们使用多状态物种形成和灭绝模型的新版本,探索了该演化支中饮食之间进化转变的最可能情景,并询问具有不同进食方式(啃食、放牧和混合进食)的反刍动物谱系是否伴随着全球温度变化而经历了不同的多样化速率。性状变化的最佳模型是通过混合进食从食草动物转变为食草动物,具有可观的从放牧和混合进食向其转变的速度。混合进食和食草动物谱系的多样化速率与古温度曲线相吻合,在中新世热最大值期间表现出更高的速率。兼性混合饮食和放牧状态的起源可能引发了两次适应性辐射——一次是在始新世-渐新世过渡期间,另一次是在中新世中期至晚期。我们对牛科和鹿科基础谱系的混合饮食的估计与化石证据一致,而一些贫困谱系(长颈鹿科和鹿科)的食草动物祖先的重建则不一致。我们的结果为以前强调饮食创新(尤其是混合进食)在新近纪反刍动物成功中的重要性的古生物学发现和基于化石的假说提供了基于模型的新生证据。

相似文献

1
Dietary innovations spurred the diversification of ruminants during the Caenozoic.
Proc Biol Sci. 2013 Dec 18;281(1776):20132746. doi: 10.1098/rspb.2013.2746. Print 2014 Feb 7.
3
The evolution of phylogenetic differences in the efficiency of digestion in ruminants.
Proc Biol Sci. 2004 May 22;271(1543):1081-90. doi: 10.1098/rspb.2004.2714.
4
Ruminant diets and the Miocene extinction of European great apes.
Proc Biol Sci. 2010 Oct 22;277(1697):3105-12. doi: 10.1098/rspb.2010.0523. Epub 2010 Jun 2.
5
9
Temperate radiations and dying embers of a tropical past: the diversification of Viburnum.
New Phytol. 2015 Jul;207(2):340-354. doi: 10.1111/nph.13305. Epub 2015 Feb 3.
10
Key innovations in ruminant evolution: a paleontological perspective.
Integr Zool. 2014 Aug;9(4):412-33. doi: 10.1111/1749-4877.12080.

引用本文的文献

1
The Development of Horns in Bovidae and the Genetic Mechanisms Underpinning This Process.
Biology (Basel). 2025 Aug 11;14(8):1027. doi: 10.3390/biology14081027.
2
Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks.
Sci Adv. 2024 Jul 26;10(30):eadl2643. doi: 10.1126/sciadv.adl2643. Epub 2024 Jul 24.
5
Evolutionary activation of acidic chitinase in herbivores through the H128R mutation in ruminant livestock.
iScience. 2023 Jul 3;26(8):107254. doi: 10.1016/j.isci.2023.107254. eCollection 2023 Aug 18.
6
The build-up of the present-day tropical diversity of tetrapods.
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2220672120. doi: 10.1073/pnas.2220672120. Epub 2023 May 9.
8
Diversification of the ruminant skull along an evolutionary line of least resistance.
Sci Adv. 2023 Mar;9(9):eade8929. doi: 10.1126/sciadv.ade8929. Epub 2023 Mar 1.
9
What is a mammalian omnivore? Insights into terrestrial mammalian diet diversity, body mass and evolution.
Proc Biol Sci. 2023 Feb 8;290(1992):20221062. doi: 10.1098/rspb.2022.1062. Epub 2023 Feb 1.

本文引用的文献

1
The functional significance of the browser-grazer dichotomy in African ruminants.
Oecologia. 1994 Jul;98(2):167-175. doi: 10.1007/BF00341469.
2
The functional relationship between feeding type and jaw and cranial morphology in ungulates.
Oecologia. 1999 Feb;118(2):157-165. doi: 10.1007/s004420050714.
3
Multi-proxy approach detects heterogeneous habitats for primates during the Miocene climatic optimum in Central Europe.
J Hum Evol. 2012 Jul;63(1):150-61. doi: 10.1016/j.jhevol.2012.04.006. Epub 2012 Jun 2.
5
Longer in the tooth, shorter in the record? The evolutionary correlates of hypsodonty in Neogene ruminants.
Proc Biol Sci. 2011 Dec 7;278(1724):3474-81. doi: 10.1098/rspb.2011.0273. Epub 2011 Apr 6.
6
On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology.
Biol Rev Camb Philos Soc. 2011 Aug;86(3):733-58. doi: 10.1111/j.1469-185X.2011.00176.x. Epub 2011 Mar 21.
7
Host shifts and evolutionary radiations of butterflies.
Proc Biol Sci. 2010 Dec 22;277(1701):3735-43. doi: 10.1098/rspb.2010.0211. Epub 2010 Jul 7.
8
Radiation of extant cetaceans driven by restructuring of the oceans.
Syst Biol. 2009 Dec;58(6):573-85. doi: 10.1093/sysbio/syp060. Epub 2009 Oct 5.
9
Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate.
Proc Biol Sci. 2010 Sep 7;277(1694):2721-6. doi: 10.1098/rspb.2010.0348. Epub 2010 Apr 28.
10
Lineages that cheat death: surviving the squeeze on range size.
Evolution. 2010 Aug;64(8):2278-92. doi: 10.1111/j.1558-5646.2010.01018.x. Epub 2010 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验