Nathoo F S, Babul A, Moiseev A, Virji-Babul N, Beg M F
Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada.
Biometrics. 2014 Mar;70(1):132-43. doi: 10.1111/biom.12126. Epub 2013 Dec 19.
In this article, we present a new variational Bayes approach for solving the neuroelectromagnetic inverse problem arising in studies involving electroencephalography (EEG) and magnetoencephalography (MEG). This high-dimensional spatiotemporal estimation problem involves the recovery of time-varying neural activity at a large number of locations within the brain, from electromagnetic signals recorded at a relatively small number of external locations on or near the scalp. Framing this problem within the context of spatial variable selection for an underdetermined functional linear model, we propose a spatial mixture formulation where the profile of electrical activity within the brain is represented through location-specific spike-and-slab priors based on a spatial logistic specification. The prior specification accommodates spatial clustering in brain activation, while also allowing for the inclusion of auxiliary information derived from alternative imaging modalities, such as functional magnetic resonance imaging (fMRI). We develop a variational Bayes approach for computing estimates of neural source activity, and incorporate a nonparametric bootstrap for interval estimation. The proposed methodology is compared with several alternative approaches through simulation studies, and is applied to the analysis of a multimodal neuroimaging study examining the neural response to face perception using EEG, MEG, and fMRI.
在本文中,我们提出了一种新的变分贝叶斯方法,用于解决在涉及脑电图(EEG)和脑磁图(MEG)的研究中出现的神经电磁逆问题。这个高维时空估计问题涉及从头皮上或头皮附近相对较少数量的外部位置记录的电磁信号中,恢复大脑内大量位置处随时间变化的神经活动。将这个问题置于欠定功能线性模型的空间变量选择背景下,我们提出了一种空间混合公式,其中大脑内电活动的分布通过基于空间逻辑规范的特定位置尖峰和平板先验来表示。先验规范考虑了大脑激活中的空间聚类,同时还允许纳入从诸如功能磁共振成像(fMRI)等替代成像模态获得的辅助信息。我们开发了一种变分贝叶斯方法来计算神经源活动的估计值,并纳入非参数自助法进行区间估计。通过模拟研究将所提出的方法与几种替代方法进行了比较,并将其应用于一项多模态神经成像研究的分析中,该研究使用EEG、MEG和fMRI来检查对面部感知的神经反应。