Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Semin Cell Dev Biol. 2014 Jan-Feb;25-26:61-70. doi: 10.1016/j.semcdb.2013.12.003. Epub 2013 Dec 16.
Four conserved signaling pathways, including the bone morphogenetic proteins (Bmp), fibroblast growth factors (Fgf), sonic hedgehog (Shh), and wingless-related (Wnt) pathways, are each repeatedly used throughout tooth development. Inactivation of any of these resulted in early tooth developmental arrest in mice. The mutations identified thus far in human patients with tooth agenesis also affect these pathways. Recent studies show that these signaling pathways interact through positive and negative feedback loops to regulate not only morphogenesis of individual teeth but also tooth number, shape, and spatial pattern. Increased activity of each of the Fgf, Shh, and canonical Wnt signaling pathways revitalizes development of the physiologically arrested mouse diastemal tooth germs whereas constitutive activation of canonical Wnt signaling in the dental epithelium is able to induce supernumerary tooth formation even in the absence of Msx1 and Pax9, two transcription factors required for normal tooth development beyond the early bud stage. Bmp4 and Msx1 act in a positive feedback loop to drive sequential tooth formation whereas the Osr2 transcription factor restricts Msx1-mediated expansion of the mesenchymal odontogenic field along both the buccolingual and anteroposterior axes to pattern mouse molar teeth in a single row. Moreover, the ectodermal-specific ectodysplasin (EDA) signaling pathway controls tooth number and tooth shape through regulation of Fgf20 expression in the dental epithelium, whereas Shh suppresses Wnt signaling through a negative feedback loop to regulate spatial patterning of teeth. In this article, we attempt to integrate these exciting findings in the understanding of the molecular networks regulating tooth development and patterning.
四个保守的信号通路,包括骨形态发生蛋白(Bmp)、成纤维细胞生长因子(Fgf)、 sonic hedgehog(Shh)和无翅相关(Wnt)通路,在牙齿发育过程中被反复使用。这些通路中的任何一个的失活都会导致小鼠早期牙齿发育停滞。迄今为止在无牙症患者中发现的突变也会影响这些通路。最近的研究表明,这些信号通路通过正反馈和负反馈环相互作用,不仅调节单个牙齿的形态发生,还调节牙齿的数量、形状和空间模式。每个 Fgf、Shh 和经典 Wnt 信号通路的活性增加都会使生理性停滞的小鼠间充质牙胚重新发育,而经典 Wnt 信号在牙上皮中的组成性激活甚至能够在缺乏 Msx1 和 Pax9 的情况下诱导额外牙齿的形成,这两个转录因子对于正常牙齿发育超出早期芽阶段是必需的。Bmp4 和 Msx1 以正反馈环的方式作用,驱动顺序牙齿形成,而 Osr2 转录因子则限制 Msx1 介导的间充质牙源性领域在颊舌和前后轴向上的扩张,以使小鼠磨牙呈单行排列。此外,外胚层特异性 ectodysplasin(EDA)信号通路通过调节牙上皮中的 Fgf20 表达来控制牙齿数量和形状,而 Shh 通过负反馈环抑制 Wnt 信号来调节牙齿的空间模式。在本文中,我们试图整合这些关于调控牙齿发育和模式的分子网络的令人兴奋的发现。
Semin Cell Dev Biol. 2013-12-16
Development. 2013-1-15
J Dent Res. 2015-4-27
J Oral Biol Craniofac Res. 2025
Dent J (Basel). 2025-3-4
Curr Drug Targets. 2025
Children (Basel). 2024-11-24
Int J Oral Sci. 2024-2-19
Clin Oral Investig. 2023-12-29
Dev Biol. 2013-2-17
Development. 2013-1-15
Sci Signal. 2012-10-16
Development. 2012-10
Cold Spring Harb Perspect Biol. 2012-4-1