Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
J Dent Res. 2015 Aug;94(8):1113-9. doi: 10.1177/0022034515583673. Epub 2015 Apr 27.
Tooth organogenesis depends on genetically programmed sequential and reciprocal inductive interactions between the dental epithelium and neural crest-derived mesenchyme. Previous studies showed that the Msx1 and Runx2 transcription factors are required for activation of odontogenic signals, including Bmp4 and Fgf3, in the early tooth mesenchyme to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 acts downstream of Msx1 to activate Fgf3 expression. Recent studies identified Osr2 as a repressor of tooth development and showed that inactivation of Osr2 rescued molar tooth morphogenesis in the Msx1(-/-) mutant mice as well as in mice with neural crest-specific inactivation of Bmp4. Here we show that Runx2 expression is expanded in the tooth bud mesenchyme in Osr2(-/-) mutant mouse embryos and is partially restored in the tooth mesenchyme in Msx1(-/-)Osr2(-/-) mutants in comparison with Msx1(-/-) and wild-type embryos. Whereas mandibular molar development arrested at the bud stage and maxillary molar development arrested at the bud-to-cap transition in Runx2(-/-) mutant mice, both mandibular and maxillary molar tooth germs progressed to the early bell stage, with rescued expression of Msx1 and Bmp4 in the dental papilla as well as expression of Bmp4, p21, and Shh in the primary enamel knot in the Osr2(-/-)Runx2(-/-) compound mutants. In contrast to the Msx1(-/-)Osr2(-/-) compound mutants, which exhibit nearly normal first molar morphogenesis, the Osr2(-/-)Runx2(-/-) compound mutant embryos failed to activate the expression of Fgf3 and Fgf10 in the dental papilla and exhibited significant deficit in cell proliferation in both the dental epithelium and mesenchyme in comparison with the control embryos. These data indicate that Runx2 synergizes with Msx1 to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 controls continued tooth growth and morphogenesis beyond the cap stage through activation of Fgf3 and Fgf10 expression in the dental papilla.
牙齿器官发生依赖于牙上皮和神经嵴衍生中胚层之间遗传编程的顺序和相互诱导相互作用。先前的研究表明,Msx1 和 Runx2 转录因子对于早期牙齿间质中牙发生信号的激活是必需的,包括 Bmp4 和 Fgf3,通过芽帽过渡驱动牙齿形态发生,并且 Runx2 作用于 Msx1 的下游以激活 Fgf3 表达。最近的研究确定 Osr2 为牙齿发育的抑制剂,并表明 Osr2 的失活挽救了 Msx1(-/-)突变小鼠以及神经嵴特异性 Bmp4 失活的小鼠的磨牙形态发生。在这里,我们表明在 Osr2(-/-)突变小鼠胚胎的牙芽间质中 Runx2 表达扩大,并且在 Msx1(-/-)Osr2(-/-)突变体的牙间质中部分恢复,与 Msx1(-/-)和野生型胚胎相比。虽然下颌磨牙发育在芽期停止,上颌磨牙发育在芽帽过渡停止,但在 Runx2(-/-)突变小鼠中,下颌和上颌磨牙牙原基均进展到早期钟形阶段,牙乳头中 Msx1 和 Bmp4 的表达以及初级釉结中 Bmp4、p21 和 Shh 的表达得到挽救。与 Msx1(-/-)Osr2(-/-)复合突变体相比,后者表现出几乎正常的第一磨牙形态发生,Osr2(-/-)Runx2(-/-)复合突变体胚胎未能激活牙乳头中 Fgf3 和 Fgf10 的表达,并且与对照胚胎相比,在牙上皮和间充质中细胞增殖显著减少。这些数据表明,Runx2 与 Msx1 协同作用,通过芽帽过渡驱动牙齿形态发生,并且 Runx2 通过激活牙乳头中 Fgf3 和 Fgf10 的表达控制帽状阶段之后的牙齿生长和形态发生。