Genetics Department, Hospital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (APHP), Unité Mixte de Recherche en Sante (UMRS) 956 Institut National de la Sante et de la Recherche Medicale INSERM, Université Pierre et Marie Curie Paris 06 (UPMC), and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.
Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York.
J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D13-21. doi: 10.1016/j.jacc.2013.10.035.
Major discoveries have been obtained within the last decade in the field of hereditary predisposition to pulmonary arterial hypertension (PAH). Among them, the identification of bone morphogenetic protein receptor type 2 (BMPR2) as the major predisposing gene and activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) as the major gene when PAH is associated with hereditary hemorrhagic telangiectasia. The mutation detection rate for the known genes is approximately 75% in familial PAH, but the mutation shortfall remains unexplained even after careful molecular investigation of these genes. To identify additional genetic variants predisposing to PAH, investigators harnessed the power of next-generation sequencing to successfully identify additional genes that will be described in this report. Furthermore, common genetic predisposing factors for PAH can be identified by genome-wide association studies and are detailed in this paper. The careful study of families and routine genetic diagnosis facilitated natural history studies based on large registries of PAH patients to be set up in different countries. These longitudinal or cross-sectional studies permitted the clinical characterization of PAH in mutation carriers to be accurately described. The availability of molecular genetic diagnosis has opened up a new field for patient care, including genetic counseling for a severe disease, taking into account that the major predisposing gene has a highly variable penetrance between families. Molecular information can be drawn from the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues and cells, to gain insight into the mechanisms leading to the development of the disease. High-throughput genomic techniques, on the basis of next-generation sequencing, now allow the accurate quantification and analysis of ribonucleic acid, species, including micro-ribonucleic acids, and allow for a genome-wide investigation of epigenetic or regulatory mechanisms, which include deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription factor binding.
在过去十年中,遗传性肺动脉高压 (PAH) 领域取得了重大发现。其中,骨形态发生蛋白受体 2 型 (BMPR2) 被确定为主要易感基因,而在遗传性出血性毛细血管扩张症相关 PAH 中,激活素 A 受体型 II 样激酶-1 (ACVRL1,也称为 ALK1) 被确定为主要基因。在家族性 PAH 中,已知基因的突变检测率约为 75%,但即使对这些基因进行了仔细的分子研究,突变缺失仍未得到解释。为了确定导致 PAH 的其他遗传变异,研究人员利用下一代测序技术成功鉴定了将在本报告中描述的其他基因。此外,通过全基因组关联研究可以确定导致 PAH 的常见遗传易感因素,并在本文中详细介绍。对家族的仔细研究和常规基因诊断有助于在不同国家建立基于 PAH 患者大型登记册的自然史研究。这些纵向或横断面研究使对突变携带者的 PAH 进行准确临床描述成为可能。分子遗传诊断的出现为患者护理开辟了一个新领域,包括对严重疾病进行遗传咨询,考虑到主要易感基因在家族之间的外显率存在很大差异。可以从 PAH 受影响组织(特别是肺血管组织和细胞)的基因组研究中获取分子遗传信息,以深入了解导致疾病发展的机制。基于下一代测序的高通量基因组技术现在允许对核糖核酸进行准确的定量和分析,包括 micro-核糖核酸,并允许对全基因组的表观遗传或调控机制进行研究,包括脱氧核糖核酸甲基化、组蛋白甲基化和乙酰化,或转录因子结合。