Suppr超能文献

一种在多元校正中迭代保留信息变量以选择最优变量子集的策略。

A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration.

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.

出版信息

Anal Chim Acta. 2014 Jan 7;807:36-43. doi: 10.1016/j.aca.2013.11.032. Epub 2013 Nov 21.

Abstract

Nowadays, with a high dimensionality of dataset, it faces a great challenge in the creation of effective methods which can select an optimal variables subset. In this study, a strategy that considers the possible interaction effect among variables through random combinations was proposed, called iteratively retaining informative variables (IRIV). Moreover, the variables are classified into four categories as strongly informative, weakly informative, uninformative and interfering variables. On this basis, IRIV retains both the strongly and weakly informative variables in every iterative round until no uninformative and interfering variables exist. Three datasets were employed to investigate the performance of IRIV coupled with partial least squares (PLS). The results show that IRIV is a good alternative for variable selection strategy when compared with three outstanding and frequently used variable selection methods such as genetic algorithm-PLS, Monte Carlo uninformative variable elimination by PLS (MC-UVE-PLS) and competitive adaptive reweighted sampling (CARS). The MATLAB source code of IRIV can be freely downloaded for academy research at the website: http://code.google.com/p/multivariate-calibration/downloads/list.

摘要

如今,随着数据集的高维度,它在创建能够选择最优变量子集的有效方法方面面临着巨大的挑战。在这项研究中,提出了一种通过随机组合考虑变量之间可能存在的交互效应的策略,称为迭代保留信息变量(IRIV)。此外,将变量分为强信息变量、弱信息变量、无信息变量和干扰变量四类。在此基础上,IRIV 在每一轮迭代中保留强信息变量和弱信息变量,直到不存在无信息变量和干扰变量为止。利用三个数据集考察了与偏最小二乘(PLS)相结合的 IRIV 的性能。结果表明,与三种常用的变量选择方法(遗传算法-PLS、基于 PLS 的蒙特卡罗无信息变量消除(MC-UVE-PLS)和竞争自适应重加权采样(CARS))相比,IRIV 是一种很好的变量选择策略。IRIV 的 MATLAB 源代码可在 academy research 网站免费下载:http://code.google.com/p/multivariate-calibration/downloads/list。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验