Suppr超能文献

一种结合智能变量选择模型的灵敏表面增强拉曼散射传感器用于检测茶叶中的毒死蜱残留

A Sensitive SERS Sensor Combined with Intelligent Variable Selection Models for Detecting Chlorpyrifos Residue in Tea.

作者信息

Yang Hanhua, Qian Hao, Xu Yi, Zhai Xiaodong, Zhu Jiaji

机构信息

School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.

出版信息

Foods. 2024 Jul 26;13(15):2363. doi: 10.3390/foods13152363.

Abstract

Chlorpyrifos is one of the most widely used broad-spectrum insecticides in agriculture. Given its potential toxicity and residue in food (e.g., tea), establishing a rapid and reliable method for the determination of chlorpyrifos residue is crucial. In this study, a strategy combining surface-enhanced Raman spectroscopy (SERS) and intelligent variable selection models for detecting chlorpyrifos residue in tea was established. First, gold nanostars were fabricated as a SERS sensor for measuring the SERS spectra. Second, the raw SERS spectra were preprocessed to facilitate the quantitative analysis. Third, a partial least squares model and four outstanding intelligent variable selection models, Monte Carlo-based uninformative variable elimination, competitive adaptive reweighted sampling, iteratively retaining informative variables, and variable iterative space shrinkage approach, were developed for detecting chlorpyrifos residue in a comparative study. The repeatability and reproducibility tests demonstrated the excellent stability of the proposed strategy. Furthermore, the sensitivity of the proposed strategy was assessed by estimating limit of detection values of the various models. Finally, two-tailed paired -tests confirmed that the accuracy of the proposed strategy was equivalent to that of gas chromatography-mass spectrometry. Hence, the proposed method provides a promising strategy for detecting chlorpyrifos residue in tea.

摘要

毒死蜱是农业中使用最广泛的广谱杀虫剂之一。鉴于其潜在毒性和在食品(如茶叶)中的残留,建立一种快速可靠的毒死蜱残留检测方法至关重要。在本研究中,建立了一种结合表面增强拉曼光谱(SERS)和智能变量选择模型来检测茶叶中毒死蜱残留的策略。首先,制备金纳米星作为用于测量SERS光谱的SERS传感器。其次,对原始SERS光谱进行预处理以促进定量分析。第三,开发了偏最小二乘模型和四个优秀的智能变量选择模型,即基于蒙特卡洛的无信息变量消除、竞争性自适应重加权采样、迭代保留信息变量和变量迭代空间收缩方法,用于在比较研究中检测毒死蜱残留。重复性和再现性测试证明了所提出策略的出色稳定性。此外,通过估计各种模型的检测限来评估所提出策略的灵敏度。最后,双尾配对检验证实所提出策略的准确性与气相色谱-质谱法相当。因此,所提出的方法为检测茶叶中毒死蜱残留提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/11311742/eaeec0c0a748/foods-13-02363-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验