Suppr超能文献

视频事件检测:从子体积定位到时空路径搜索。

Video event detection: from subvolume localization to spatiotemporal path search.

机构信息

Dartmouth College, Hanover.

Nanyang Technological University, Singapore.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 Feb;36(2):404-16. doi: 10.1109/TPAMI.2013.137.

Abstract

Although sliding window-based approaches have been quite successful in detecting objects in images, it is not a trivial problem to extend them to detecting events in videos. We propose to search for spatiotemporal paths for video event detection. This new formulation can accurately detect and locate video events in cluttered and crowded scenes, and is robust to camera motions. It can also well handle the scale, shape, and intraclass variations of the event. Compared to event detection using spatiotemporal sliding windows, the spatiotemporal paths correspond to the event trajectories in the video space, thus can better handle events composed by moving objects. We prove that the proposed search algorithm can achieve the global optimal solution with the lowest complexity. Experiments are conducted on realistic video data sets with different event detection tasks, such as anomaly event detection, walking person detection, and running detection. Our proposed method is compatible with different types of video features or object detectors and robust to false and missed local detections. It significantly improves the overall detection and localization accuracy over the state-of-the-art methods.

摘要

虽然基于滑动窗口的方法在图像目标检测中取得了相当大的成功,但将其扩展到视频事件检测中并不是一个简单的问题。我们提出了一种基于时空路径搜索的视频事件检测方法。这种新的表示形式可以准确地检测和定位杂乱和拥挤场景中的视频事件,并且对相机运动具有鲁棒性。它还可以很好地处理事件的尺度、形状和类内变化。与使用时空滑动窗口的事件检测相比,时空路径对应于视频空间中的事件轨迹,因此可以更好地处理由移动物体组成的事件。我们证明了所提出的搜索算法可以以最低的复杂度达到全局最优解。实验是在具有不同事件检测任务的真实视频数据集上进行的,例如异常事件检测、行人检测和跑步检测。我们提出的方法与不同类型的视频特征或目标检测器兼容,并且对虚假和漏检具有鲁棒性。它显著提高了整体检测和定位精度,优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验