用于锂离子电池的具有三维通道的氧化锰-碳复合微球的一锅法合成。

One-pot synthesis of manganese oxide-carbon composite microspheres with three dimensional channels for Li-ion batteries.

作者信息

Ko You Na, Park Seung Bin, Choi Seung Ho, Kang Yun Chan

机构信息

1] Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea [2] Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea.

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea.

出版信息

Sci Rep. 2014 Aug 29;4:5751. doi: 10.1038/srep05751.

Abstract

The fabrication of manganese oxide-carbon composite microspheres with open nanochannels and their electrochemical performance as anode materials for lithium ion batteries are investigated. Amorphous-like Mn3O4 nanoparticles embedded in a carbon matrix with three-dimensional channels are fabricated by one-pot spray pyrolysis. The electrochemical properties of the Mn3O4 nanopowders are also compared with those of the Mn3O4-C composite microspheres possessing macropores resembling ant-cave networks. The discharge capacity of the Mn3O4-C composite microspheres at a current density of 500 mA g(-1) is 622 mA h g(-1) after 700 cycles. However, the discharge capacity of the Mn3O4 nanopowders is as low as 219 mA h g(-1) after 100 cycles. The Mn3O4-C composite microspheres with structural advantages and high electrical conductivity have higher initial discharge and charge capacities and better cycling and rate performances compared to those of the Mn3O4 nanopowders.

摘要

研究了具有开放纳米通道的氧化锰-碳复合微球的制备及其作为锂离子电池负极材料的电化学性能。通过一锅喷雾热解法制备了嵌入具有三维通道的碳基体中的类非晶态Mn3O4纳米颗粒。还将Mn3O4纳米粉末的电化学性能与具有类似蚁穴网络大孔的Mn3O4-C复合微球的电化学性能进行了比较。在700次循环后,Mn3O4-C复合微球在500 mA g(-1)电流密度下的放电容量为622 mA h g(-1)。然而,Mn3O4纳米粉末在100次循环后的放电容量低至219 mA h g(-1)。与Mn3O4纳米粉末相比,具有结构优势和高电导率的Mn3O4-C复合微球具有更高的初始充放电容量以及更好的循环和倍率性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e53/5385819/da74480fad82/srep05751-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索