Suppr超能文献

一种用于微创手术中电外科手术实时模拟的基于物理的算法。

A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery.

作者信息

Lu Zhonghua, Arikatla Venkata S, Han Zhongqing, Allen Brian F, De Suvranu

机构信息

Intelligent Manufacture and Control Institution, Wuhan University of Technology, People's Republic of China.

出版信息

Int J Med Robot. 2014 Dec;10(4):495-504. doi: 10.1002/rcs.1561. Epub 2013 Dec 19.

Abstract

BACKGROUND

High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue.

METHODS

We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization.

RESULTS

We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost.

CONCLUSIONS

Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization.

摘要

背景

高频电在大多数外科手术中都有应用。然而,现代基于计算机的培训和模拟系统依赖于物理上不现实的模型,这些模型无法捕捉生物组织的电学、力学和热学特性之间的相互作用。

方法

我们通过将电学、热学和力学特性建模为三个迭代求解的有限元模型,提出了一种实时且物理逼真的电外科模拟方法。为了提供汽化组织的亚有限元图形渲染,提出了一种基于等温线的双网格动态三角剖分算法。结果表明,块压缩行存储(BCRS)结构对于允许由于汽化导致的组织拓扑结构的高效计算变化至关重要。

结果

我们通过各种示例展示了基于物理的电外科切割算法。我们为拓扑变化设计的矩阵操作算法显示出较低的计算成本。

结论

与之前使用基于简单几何形状的热特性的模拟器相比,我们的模拟器提供了更高的物理逼真度。

相似文献

1
A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery.
Int J Med Robot. 2014 Dec;10(4):495-504. doi: 10.1002/rcs.1561. Epub 2013 Dec 19.
2
Electrical-thermal-structural coupling simulation for electrosurgery simulators.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:322-5. doi: 10.1109/IEMBS.2011.6090084.
3
Electrosurgery: part I. Basics and principles.
J Am Acad Dermatol. 2014 Apr;70(4):591.e1-591.e14. doi: 10.1016/j.jaad.2013.09.056.
4
Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation.
Comput Methods Programs Biomed. 2020 Apr;187:105244. doi: 10.1016/j.cmpb.2019.105244. Epub 2019 Nov 27.
5
Improved virtual surgical cutting based on physical experiments.
Stud Health Technol Inform. 2005;111:301-7.
6
Using the PhysX engine for physics-based virtual surgery with force feedback.
Int J Med Robot. 2009 Sep;5(3):341-53. doi: 10.1002/rcs.266.
7
Physics-based real time laparoscopic electrosurgery simulation.
Stud Health Technol Inform. 2008;132:272-4.
9
Modelling of soft tissue deformation for laparoscopic surgery simulation.
Med Image Anal. 2000 Mar;4(1):57-66. doi: 10.1016/s1361-8415(00)00002-5.
10
Material removal mechanisms in monopolar electrosurgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1180-3. doi: 10.1109/IEMBS.2007.4352507.

引用本文的文献

1
Heat conduction in live tissue during radiofrequency electrosurgery.
J R Soc Interface. 2024 Jan;21(210):20230420. doi: 10.1098/rsif.2023.0420. Epub 2024 Jan 17.
2
Face, content, and construct validity of the virtual immersive operating room simulator for training laparoscopic procedures.
Surg Endosc. 2023 Apr;37(4):2885-2896. doi: 10.1007/s00464-022-09797-4. Epub 2022 Dec 12.
3
A deep learning-based hybrid approach for the solution of multiphysics problems in electrosurgery.
Comput Methods Appl Mech Eng. 2019 Dec 1;357. doi: 10.1016/j.cma.2019.112603. Epub 2019 Sep 6.
4
A continuum thermomechanical model for the electrosurgery of soft hydrated tissues using a moving electrode.
Comput Methods Biomech Biomed Engin. 2020 Dec;23(16):1317-1335. doi: 10.1080/10255842.2020.1798415. Epub 2020 Aug 3.
5
A continuum thermomechanical model of electrosurgical heating of hydrated soft biological tissues.
Int J Heat Mass Transf. 2018 Dec;127(Pt A):961-974. doi: 10.1016/j.ijheatmasstransfer.2018.07.006. Epub 2018 Jul 14.
6
A Multiphysics Model for Radiofrequency Activation of Soft Hydrated Tissues.
Comput Methods Appl Mech Eng. 2018 Aug 1;337:527-548. doi: 10.1016/j.cma.2018.04.005. Epub 2018 Apr 12.

本文引用的文献

1
Common uses and cited complications of energy in surgery.
Surg Endosc. 2013 Sep;27(9):3056-72. doi: 10.1007/s00464-013-2823-9. Epub 2013 Apr 23.
3
A single-blind controlled study of electrocautery and ultrasonic scalpel smoke plumes in laparoscopic surgery.
Surg Endosc. 2012 Feb;26(2):337-42. doi: 10.1007/s00464-011-1872-1. Epub 2011 Sep 5.
5
Validation of a novel laparoscopic adjustable gastric band simulator.
Surg Endosc. 2011 Apr;25(4):1012-8. doi: 10.1007/s00464-010-1306-5. Epub 2010 Aug 24.
6
Analysis of tissue and arterial blood temperatures in the resting human forearm.
J Appl Physiol. 1948 Aug;1(2):93-122. doi: 10.1152/jappl.1948.1.2.93.
7
Physics-based real time laparoscopic electrosurgery simulation.
Stud Health Technol Inform. 2008;132:272-4.
8
Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future.
Biomed Eng Online. 2006 Apr 18;5:24. doi: 10.1186/1475-925X-5-24.
9
Measurements and modelling of the compliance of human and porcine organs.
Med Image Anal. 2001 Dec;5(4):231-6. doi: 10.1016/s1361-8415(01)00048-2.
10
The acute effects of radiofrequency energy in articular cartilage: an in vitro study.
Arthroscopy. 2000 Jan-Feb;16(1):2-5. doi: 10.1016/s0749-8063(00)90119-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验