Lu Zhonghua, Arikatla Venkata S, Han Zhongqing, Allen Brian F, De Suvranu
Intelligent Manufacture and Control Institution, Wuhan University of Technology, People's Republic of China.
Int J Med Robot. 2014 Dec;10(4):495-504. doi: 10.1002/rcs.1561. Epub 2013 Dec 19.
High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue.
We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization.
We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost.
Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization.
高频电在大多数外科手术中都有应用。然而,现代基于计算机的培训和模拟系统依赖于物理上不现实的模型,这些模型无法捕捉生物组织的电学、力学和热学特性之间的相互作用。
我们通过将电学、热学和力学特性建模为三个迭代求解的有限元模型,提出了一种实时且物理逼真的电外科模拟方法。为了提供汽化组织的亚有限元图形渲染,提出了一种基于等温线的双网格动态三角剖分算法。结果表明,块压缩行存储(BCRS)结构对于允许由于汽化导致的组织拓扑结构的高效计算变化至关重要。
我们通过各种示例展示了基于物理的电外科切割算法。我们为拓扑变化设计的矩阵操作算法显示出较低的计算成本。
与之前使用基于简单几何形状的热特性的模拟器相比,我们的模拟器提供了更高的物理逼真度。