CNRS, Université Paris Sud, Laboratoire de Chimie Physique, Orsay, France.
Biotechnol J. 2014 Feb;9(2):180-91. doi: 10.1002/biot.201300198. Epub 2013 Dec 19.
Cyan fluorescent proteins (CFPs) derived from Aequorea victoria green fluorescent protein are the most widely used Förster resonant energy transfer (FRET) donors in genetically encoded biosensors for live-cell imaging and bioassays. However, the weak and complex fluorescence emission of cyan variants, such as enhanced cyan fluorescent protein (ECFP) or Cerulean, has long remained a major bottleneck in these FRET techniques. Recently, several CFPs with greatly improved performances, including mTurquoise, mTurquoise2, mCerulean3, and Aquamarine, have been engineered through a mixture of site-directed and large-scale random mutagenesis. This review summarizes the engineering and relative merits of these new cyan donors, which can readily replace popular CFPs in FRET imaging protocols, while reaching fluorescence quantum yields close to 90%, and unprecedented long, near-single fluorescence lifetimes of about 4 ns. These variants display an increased general photostability and much reduced environmental sensitivity, notably towards acid pH. These new, bright, and robust CFPs now open up exciting outlooks for fluorescence lifetime imaging microscopy and advanced quantitative FRET analyses in living cells. In addition, the stepwise engineering of Aquamarine shows that only two critical mutations in ECFP, and one in Cerulean, are required to achieve these performances, which brings new insights into the structural bases of their photophysical properties.
来源于维多利亚多管发光水母的绿色荧光蛋白的青色荧光蛋白(CFPs)是用于活细胞成像和生物测定的遗传编码生物传感器中最广泛使用的Förster 共振能量转移(FRET)供体。然而,青色变体(如增强型青色荧光蛋白(ECFP)或 Cerulean)的微弱和复杂的荧光发射一直是这些 FRET 技术的主要瓶颈。最近,通过定点和大规模随机诱变的混合,已经工程改造了几种性能大大提高的 CFPs,包括 mTurquoise、mTurquoise2、mCerulean3 和 Aquamarine。这篇综述总结了这些新型青色供体的工程设计和相对优点,它们可以在 FRET 成像方案中轻松替代流行的 CFPs,同时达到接近 90%的荧光量子产率和前所未有的长、近单荧光寿命约 4 ns。这些变体表现出增加的一般光稳定性和大大降低的环境敏感性,特别是对酸性 pH 值。这些新型的、明亮的、稳健的 CFPs 现在为荧光寿命成像显微镜和活细胞中的高级定量 FRET 分析开辟了令人兴奋的前景。此外,Aquamarine 的逐步工程设计表明,仅在 ECFP 中有两个关键突变,在 Cerulean 中有一个突变,就可以实现这些性能,这为它们的光物理性质的结构基础提供了新的见解。