Suppr超能文献

Pax3 和 Zic1 通过直接激活多个关键神经嵴特化基因来触发早期神经嵴基因调控网络。

Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

机构信息

Université Paris Sud, Centre Universitaire, F-91405 Orsay, France; Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, F-91405 Orsay, France.

University of California at Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, USA.

出版信息

Dev Biol. 2014 Feb 15;386(2):461-72. doi: 10.1016/j.ydbio.2013.12.010. Epub 2013 Dec 17.

Abstract

Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.

摘要

神经嵴的发育是由一个复杂且尚未完全理解的基因调控网络所调控的。迁移前的神经嵴由神经板的侧向边界处的信号分子和转录因子(如 AP2、Gbx2、Pax3 和 Zic1)的共同作用诱导产生。其中,Pax3 和 Zic1 都是触发完整的神经嵴发育程序所必需和充分的。然而,它们在神经嵴调控网络中的基因靶标仍然未知。在这里,通过对青蛙微分离神经边界的转录组分析,我们确定了一个扩展的迁移前神经嵴的基因特征,并定义了调控网络的新的潜在成员。这个特征包括 34 个新基因,以及 44 个在神经边界表达的已知基因。我们利用另一个微阵列分析,该分析结合了 Pax3 和 Zic1 的功能获得和蛋白质翻译阻断,我们在这个特征中发现了 25 个 Pax3 和 Zic1 的直接靶标。我们证明,神经边界指定因子 Pax3 和 Zic1 是神经嵴指定因子 Snail1/2、Foxd3、Twist1 和 Tfap2b 的直接上游调控因子。此外,它们可能通过诱导关键信号通路调节因子(Axin2 和 Cyp26c1)来调节参与神经嵴发育的多个信号通路(Wnt、视黄酸)的转录输出。我们还发现 Pax3 可以通过正反馈环来维持自身的表达。这些层次诱导、反馈环和通路调节为理解神经嵴诱导网络提供了新的工具。

相似文献

2
Identification of Pax3 and Zic1 targets in the developing neural crest.
Dev Biol. 2014 Feb 15;386(2):473-83. doi: 10.1016/j.ydbio.2013.12.011. Epub 2013 Dec 17.
3
Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm.
Development. 2005 May;132(10):2355-63. doi: 10.1242/dev.01823. Epub 2005 Apr 20.
4
Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5528-33. doi: 10.1073/pnas.1219124110. Epub 2013 Mar 18.
5
The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border.
Mol Biol Cell. 2007 Jun;18(6):2192-202. doi: 10.1091/mbc.e06-11-1047. Epub 2007 Apr 4.
6
Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network.
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):155-60. doi: 10.1073/pnas.1010740107. Epub 2010 Dec 15.
7
Role of Sp5 as an essential early regulator of neural crest specification in xenopus.
Dev Dyn. 2013 Dec;242(12):1382-94. doi: 10.1002/dvdy.24034. Epub 2013 Sep 30.
8
9
Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus.
Dev Neurobiol. 2014 Sep;74(9):894-906. doi: 10.1002/dneu.22173. Epub 2014 Mar 5.

引用本文的文献

1
Her9 is required for the migration, differentiation, and survival of neural crest cells.
bioRxiv. 2025 Jul 22:2025.07.18.665589. doi: 10.1101/2025.07.18.665589.
3
Human organoids for rapid validation of gene variants linked to cochlear malformations.
Hum Genet. 2025 Apr;144(4):375-389. doi: 10.1007/s00439-024-02723-9. Epub 2025 Jan 9.
4
Single-cell transcriptomics reveals the cellular identity of a novel progenitor population crucial for murine neural tube closure.
Heliyon. 2024 Aug 30;10(17):e37259. doi: 10.1016/j.heliyon.2024.e37259. eCollection 2024 Sep 15.
5
Human Organoids for Rapid Validation of Gene Variants Linked to Cochlear Malformations.
Res Sq. 2024 Jun 11:rs.3.rs-4474071. doi: 10.21203/rs.3.rs-4474071/v1.
6
In vitro induction of patterned branchial arch-like aggregate from human pluripotent stem cells.
Nat Commun. 2024 Feb 14;15(1):1351. doi: 10.1038/s41467-024-45285-0.
10
Reprogramming of trunk neural crest to a cranial crest-like identity alters their transcriptome and developmental potential.
Differentiation. 2023 May-Jun;131:27-37. doi: 10.1016/j.diff.2023.04.001. Epub 2023 Apr 5.

本文引用的文献

1
Neural crest specification: tissues, signals, and transcription factors.
Wiley Interdiscip Rev Dev Biol. 2012 Jan-Feb;1(1):52-68. doi: 10.1002/wdev.8. Epub 2011 Nov 17.
3
Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5528-33. doi: 10.1073/pnas.1219124110. Epub 2013 Mar 18.
4
Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20768-73. doi: 10.1073/pnas.1210415109. Epub 2012 Nov 26.
5
Myogenic waves and myogenic programs during Xenopus embryonic myogenesis.
Dev Dyn. 2012 May;241(5):995-1007. doi: 10.1002/dvdy.23780.
6
Neural crest induction at the neural plate border in vertebrates.
Dev Biol. 2012 Jun 1;366(1):22-33. doi: 10.1016/j.ydbio.2012.01.013. Epub 2012 Jan 25.
7
Global gene expression analysis of murine limb development.
PLoS One. 2011;6(12):e28358. doi: 10.1371/journal.pone.0028358. Epub 2011 Dec 9.
8
Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis.
PLoS Genet. 2011 Sep;7(9):e1002309. doi: 10.1371/journal.pgen.1002309. Epub 2011 Sep 29.
9
FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk.
J Cell Biol. 2011 Aug 8;194(3):489-503. doi: 10.1083/jcb.201011077. Epub 2011 Aug 1.
10
prdm1a and olig4 act downstream of Notch signaling to regulate cell fate at the neural plate border.
Dev Biol. 2011 Aug 15;356(2):496-505. doi: 10.1016/j.ydbio.2011.06.005. Epub 2011 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验