School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
Life Sci. 2014 Mar 3;97(2):123-8. doi: 10.1016/j.lfs.2013.12.008. Epub 2013 Dec 21.
Microgravity and radiation, common in space, are the main factors influencing astronauts' health in space flight, but their combined effects on immune cells are extremely limited. Therefore, the effect of simulated microgravity on heavy ion radiation-induced apoptosis, and reactive oxygen species (ROS)-sensitive apoptosis signaling were investigated in human B lymphoblast HMy2.CIR cells.
Simulated microgravity was achieved using a Rotating Wall Vessel Bioreactor at 37°C for 30 min. Heavy carbon-ion irradiation was carried out at 300 MeV/u, with a linear energy transfer (LET) value of 30 keV/μm and a dose rate of 1Gy/min. Cell survival was evaluated using the Trypan blue exclusion assay. Apoptosis was indicated by Annexin V/propidium iodide staining. ROS production was assessed by cytometry with a fluorescent probe dichlorofluorescein. Malondialdehyde was detected using a kit. Extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase phosphatase-1 (MKP-1) and caspase-3 activation were measured by immunoblotting.
Simulated microgravity decreased heavy ion radiation-induced cell survival and increased apoptosis in HMy2.CIR cells. It also amplified heavy ion radiation-elicited intracellular ROS generation, which induced ROS-sensitive ERK/MKP-1/caspase-3 activation in HMy2.CIR cells. The above phenomena could be reversed by the antioxidants N-acetyl cysteine (NAC) and quercetin.
These results illustrated that simulated microgravity increased heavy ion radiation-induced cell apoptosis, mediated by a ROS-sensitive signal pathway in human B lymphoblasts. Further, the antioxidants NAC and quercetin, especially NAC, might be good candidate drugs for protecting astronauts' and space travelers' health and safety.
微重力和辐射是太空中影响宇航员健康的主要因素,但它们对免疫细胞的综合影响是极其有限的。因此,本研究旨在探讨模拟微重力对重离子辐射诱导的人 B 淋巴细胞 HMy2.CIR 细胞凋亡及活性氧(ROS)敏感凋亡信号的影响。
采用 37°C 旋转壁式生物反应器模拟微重力,持续 30min。采用 300MeV/u 的重碳离子进行辐照,线性能量转移(LET)值为 30keV/μm,剂量率为 1Gy/min。采用台盼蓝排斥试验评估细胞存活率。通过 Annexin V/碘化丙啶染色来指示细胞凋亡。通过荧光探针二氯荧光素进行细胞内 ROS 产生的流式细胞术检测。使用试剂盒检测丙二醛。通过免疫印迹法检测细胞外信号调节激酶(ERK)、丝裂原活化蛋白激酶磷酸酶-1(MKP-1)和半胱天冬酶-3 的激活。
模拟微重力降低了重离子辐射诱导的 HMy2.CIR 细胞存活率,并增加了其凋亡。它还放大了重离子辐射引起的细胞内 ROS 产生,从而诱导了 HMy2.CIR 细胞中 ROS 敏感的 ERK/MKP-1/半胱天冬酶-3 激活。上述现象可以通过抗氧化剂 N-乙酰半胱氨酸(NAC)和槲皮素逆转。
这些结果表明,模拟微重力通过人 B 淋巴细胞中的 ROS 敏感信号通路增加了重离子辐射诱导的细胞凋亡。此外,抗氧化剂 NAC 和槲皮素,特别是 NAC,可能是保护宇航员和太空旅行者健康和安全的良好候选药物。