Suppr超能文献

NMR 定位神经丝氨酸核酶活性部位的二价阳离子,深入了解 RNA-金属离子相互作用。

NMR localization of divalent cations at the active site of the Neurospora VS ribozyme provides insights into RNA-metal-ion interactions.

机构信息

Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada.

出版信息

Biochemistry. 2014 Jan 28;53(3):579-90. doi: 10.1021/bi401484a. Epub 2014 Jan 10.

Abstract

Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.

摘要

金属阳离子是 RNA 结构和功能的关键要素。在 Neurospora VS 核酶中,金属阳离子发挥着多种作用;它们对于底物识别、活性部位的形成以及对两个关键碱基的 pKa 值的改变至关重要,这两个碱基有助于通用酸碱机制。最近,我们确定了 VS 核酶活性部位(SLVI)的 A730 环的 NMR 结构,该结构有助于在切割反应的酶促机制中提供通用酸(A756)。我们的研究表明,镁(Mg(2+)) 离子对于稳定 A730 环中的 S-转角基序的形成至关重要,该基序暴露 A756 碱基用于催化。在本文中,我们通过使用锰诱导的顺磁弛豫增强和硫代磷酸酯 RNA 的镉诱导化学位移扰动,精确地绘制了 Mg(2+)-离子结合位点,从而扩展了这些 NMR 研究。这些实验确定了 SLVI 内的五个 Mg(2+)-离子结合位点。SLVI 中的四个 Mg(2+) 离子与已知的 RNA 结构基序相关,包括 G-U 摆动对和 GNRA 四链环,我们的研究揭示了 Mg(2+) 离子与这些 RNA 基序结合的新见解。有趣的是,一个 Mg(2+) 离子与 S-转角基序特异性相关,证实了它在 A730 环折叠中的结构作用。该 Mg(2+) 离子可能对于活性部位的形成很重要,并且可能在催化中发挥间接作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d89c/3906864/f53bd2e50edc/bi-2013-01484a_0002.jpg

相似文献

3
NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site.
Nucleic Acids Res. 2011 May;39(10):4427-37. doi: 10.1093/nar/gkq1244. Epub 2011 Jan 25.
5
NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site.
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7003-8. doi: 10.1073/pnas.0832440100. Epub 2003 Jun 2.
6
Folding and catalysis by the VS ribozyme.
Biochimie. 2002 Sep;84(9):889-96. doi: 10.1016/s0300-9084(02)01406-2.
8
Role of SLV in SLI substrate recognition by the Neurospora VS ribozyme.
RNA. 2008 Apr;14(4):736-48. doi: 10.1261/rna.824308. Epub 2008 Feb 26.

引用本文的文献

1
Nucleic acid-protein interfaces studied by MAS solid-state NMR spectroscopy.
J Struct Biol X. 2022 Aug 18;6:100072. doi: 10.1016/j.yjsbx.2022.100072. eCollection 2022.
2
Sodium and Magnesium Ion Location at the Backbone and at the Nucleobase of RNA: Molecular Dynamics in Water Solution.
ACS Omega. 2022 Jun 23;7(27):23234-23244. doi: 10.1021/acsomega.2c01327. eCollection 2022 Jul 12.
5
Mg Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs.
Biophys J. 2020 Mar 24;118(6):1424-1437. doi: 10.1016/j.bpj.2020.01.021. Epub 2020 Jan 28.
6
Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme.
Nat Chem. 2020 Feb;12(2):193-201. doi: 10.1038/s41557-019-0391-x. Epub 2020 Jan 20.
7
Insights into RNA structure and dynamics from recent NMR and X-ray studies of the Neurospora Varkud satellite ribozyme.
Wiley Interdiscip Rev RNA. 2017 Sep;8(5). doi: 10.1002/wrna.1421. Epub 2017 Apr 6.
8
Characterization of Mg Distributions around RNA in Solution.
ACS Omega. 2016 Oct 31;1(4):680-688. doi: 10.1021/acsomega.6b00241. Epub 2016 Oct 26.
9
NMR Structures and Dynamics in a Prohead RNA Loop that Binds Metal Ions.
J Phys Chem Lett. 2016 Oct 6;7(19):3841-3846. doi: 10.1021/acs.jpclett.6b01465. Epub 2016 Sep 19.
10
Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR.
J Biol Inorg Chem. 2016 Jun;21(3):319-28. doi: 10.1007/s00775-016-1341-3. Epub 2016 Feb 15.

本文引用的文献

2
Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme.
Biochemistry. 2013 Sep 17;52(37):6499-514. doi: 10.1021/bi4000673. Epub 2013 Sep 3.
3
Identification of the catalytic Mg²⁺ ion in the hepatitis delta virus ribozyme.
Biochemistry. 2013 Jan 22;52(3):557-67. doi: 10.1021/bi3013092. Epub 2013 Jan 11.
4
The structure and folding of kink turns in RNA.
Wiley Interdiscip Rev RNA. 2012 Nov-Dec;3(6):797-805. doi: 10.1002/wrna.1136. Epub 2012 Sep 13.
5
NMR View: A computer program for the visualization and analysis of NMR data.
J Biomol NMR. 1994 Sep;4(5):603-14. doi: 10.1007/BF00404272.
7
WebFR3D--a server for finding, aligning and analyzing recurrent RNA 3D motifs.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W50-5. doi: 10.1093/nar/gkr249. Epub 2011 Apr 22.
8
NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site.
Nucleic Acids Res. 2011 May;39(10):4427-37. doi: 10.1093/nar/gkq1244. Epub 2011 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验