Suppr超能文献

镁通过非顺序磷酸对的推拉稳定作用影响Twister核酶。

Mg Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs.

作者信息

Kognole Abhishek A, MacKerell Alexander D

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.

出版信息

Biophys J. 2020 Mar 24;118(6):1424-1437. doi: 10.1016/j.bpj.2020.01.021. Epub 2020 Jan 28.

Abstract

RNA molecules perform a variety of biological functions for which the correct three-dimensional structure is essential, including as ribozymes where they catalyze chemical reactions. Metal ions, especially Mg, neutralize these negatively charged nucleic acids and specifically stabilize RNA tertiary structures as well as impact the folding landscape of RNAs as they assume their tertiary structures. Specific binding sites of Mg in folded conformations of RNA have been studied extensively; however, the full range of interactions of the ion with compact intermediates and unfolded states of RNA is challenging to investigate, and the atomic details of the mechanism by which the ion facilitates tertiary structure formation is not fully known. Here, umbrella sampling combined with oscillating chemical potential Grand Canonical Monte Carlo/molecular dynamics simulations are used to capture the energetics and atomic-level details of Mg-RNA interactions that occur along an unfolding pathway of the Twister ribozyme. The free energy profiles reveal stabilization of partially unfolded states by Mg, as observed in unfolding experiments, with this stabilization being due to increased sampling of simultaneous interactions of Mg with two or more nonsequential phosphate groups. Notably, these results indicate a push-pull mechanism in which the Mg-RNA interactions actually lead to destabilization of specific nonsequential phosphate-phosphate interactions (i.e., pushed apart), whereas other interactions are stabilized (i.e., pulled together), a balance that stabilizes unfolded states and facilitates the folding of Twister, including the formation of hydrogen bonds associated with the tertiary structure. This study establishes a better understanding of how Mg-ion interactions contribute to RNA structural properties and stability.

摘要

RNA分子执行多种生物学功能,而正确的三维结构对这些功能至关重要,包括作为核酶催化化学反应。金属离子,尤其是镁离子,中和这些带负电荷的核酸,特异性地稳定RNA三级结构,并在RNA形成三级结构时影响其折叠态势。RNA折叠构象中镁离子的特异性结合位点已得到广泛研究;然而,研究离子与RNA紧密中间体和未折叠状态的全部相互作用具有挑战性,且离子促进三级结构形成机制的原子细节尚不完全清楚。在此,采用伞形采样结合振荡化学势巨正则蒙特卡罗/分子动力学模拟,以捕捉沿着Twister核酶解折叠途径发生的镁离子与RNA相互作用的能量学和原子水平细节。自由能分布揭示了镁离子对部分解折叠状态的稳定作用,这与解折叠实验中观察到的一致,这种稳定作用是由于镁离子与两个或更多非连续磷酸基团同时相互作用的采样增加所致。值得注意的是,这些结果表明了一种推拉机制,其中镁离子与RNA的相互作用实际上导致特定非连续磷酸-磷酸相互作用的不稳定(即推开),而其他相互作用则得到稳定(即拉近),这种平衡稳定了解折叠状态并促进Twister的折叠,包括与三级结构相关的氢键形成。这项研究有助于更好地理解镁离子相互作用如何影响RNA的结构特性和稳定性。

相似文献

6
Catalytic strategies of self-cleaving ribozymes.自我切割核酶的催化策略。
Acc Chem Res. 2008 Aug;41(8):1027-35. doi: 10.1021/ar800050c. Epub 2008 Jul 25.
8
How do metal ions direct ribozyme folding?金属离子如何指导核酶折叠?
Nat Chem. 2015 Oct;7(10):793-801. doi: 10.1038/nchem.2330. Epub 2015 Aug 31.
9
Metals induce transient folding and activation of the twister ribozyme.金属诱导扭曲核酶的瞬时折叠和激活。
Nat Chem Biol. 2017 Oct;13(10):1109-1114. doi: 10.1038/nchembio.2459. Epub 2017 Aug 21.

引用本文的文献

本文引用的文献

5
Ion Condensation onto Ribozyme Is Site Specific and Fold Dependent.离子凝聚到核酶上是具有特异性和折叠依赖性的。
Biophys J. 2019 Jun 18;116(12):2400-2410. doi: 10.1016/j.bpj.2019.04.037. Epub 2019 May 11.
8
Metals induce transient folding and activation of the twister ribozyme.金属诱导扭曲核酶的瞬时折叠和激活。
Nat Chem Biol. 2017 Oct;13(10):1109-1114. doi: 10.1038/nchembio.2459. Epub 2017 Aug 21.
9
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics.OpenMM 7:分子动力学高性能算法的快速开发。
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659. eCollection 2017 Jul.
10
Pseudoknot Formation Seeds the Twister Ribozyme Cleavage Reaction Coordinate.假结形成引发扭结核酶切割反应坐标。
J Am Chem Soc. 2017 Jun 21;139(24):8186-8193. doi: 10.1021/jacs.7b01549. Epub 2017 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验