Fusion Innovations Ltd., Research and Innovation Services, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK.
Sensors (Basel). 2013 Dec 23;14(1):188-211. doi: 10.3390/s140100188.
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).
从环境振动中提取能量为无线传感器节点供电一直是一个很有吸引力的研究领域,特别是在汽车监测领域。本文报道了一种基于微型非对称气隙悬臂梁的振动能量采集装置的设计、分析和测试。所开发的设计提供了高的功率密度,并提供了足够的电力支持大多数用于结构健康监测 (SHM) 应用的无线传感器节点。经过三个进化步骤对优化设计进行了优化,从简单的悬臂梁设计开始,经过气隙悬臂梁,最终达到了具有更高功率密度水平的优化气隙几何形状。有限元分析 (FEA) 被用作比较三种几何形状的刚度 (K)、开路电压 (V(ave)) 和压电换能器中平均正应变 (ε(ave)) 的初始工具,这些因素直接影响其输出电压。还进行了实验测试,以检查三种设计中的每一种的能量采集水平。实验结果展示了如何在相同的空间包络内提高薄气隙悬臂梁内的能量的功率输出水平。所开发的薄气隙悬臂梁(8.37cm3)的最大功率输出为 2.05mW(H=29.29μJ/周期)。