细胞内转运决定 Pip6a-PMO 在 mdx 骨骼肌和心肌细胞中的外显子跳跃活性。
Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells.
机构信息
UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, Montpellier 34095, France, Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France, Universität Potsdam, Institut für Biochemie und Biologie, Maulbeerallee 2, 14469 Potsdam, Germany, Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK and Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
出版信息
Nucleic Acids Res. 2014 Mar;42(5):3207-17. doi: 10.1093/nar/gkt1220. Epub 2013 Dec 23.
Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyocytes. Our results indicate that Pip6a-PMO is taken up in the skeletal muscle cells by an energy- and caveolae-mediated endocytosis. Interestingly, its cellular distribution is different in undifferentiated and differentiated skeletal muscle cells (vesicular versus nuclear). Likewise, Pip6a-PMO mainly accumulates in cytoplasmic vesicles in primary cardiomyocytes, in which clathrin-mediated endocytosis seems to be the pre-dominant uptake pathway. These differences in cellular trafficking correspond well with the exon-skipping data, with higher activity in myotubes than in myoblasts or cardiomyocytes. These differences in cellular trafficking thus provide a possible mechanistic explanation for the variations in exon-skipping activity and restoration of dystrophin protein in heart muscle compared with skeletal muscle tissues in DMD models. Overall, Pip6a-PMO appears as the most efficient conjugate to date (low nanomolar EC50), even if limitations remain from endosomal escape.
细胞穿透肽介导的磷酰二胺吗啉寡聚物(PMO)的递呈在杜氏肌营养不良症(DMD)的外显子跳跃治疗中显示出巨大的前景。最近开发的缀合物 Pip6a-PMO 在小鼠 DMD 模型中特别有效,尽管负责其增加的生物学活性的机制尚未研究。在这里,我们评估了 Pip6a-PMO 在骨骼肌细胞和原代心肌细胞中的细胞内转运和生物学活性。我们的结果表明,Pip6a-PMO 通过能量和小窝介导的内吞作用被骨骼肌细胞摄取。有趣的是,它在未分化和分化的骨骼肌细胞(囊泡与核)中的细胞分布不同。同样,Pip6a-PMO 主要在原代心肌细胞中积累在细胞质囊泡中,其中网格蛋白介导的内吞作用似乎是主要的摄取途径。这些细胞内转运的差异与外显子跳跃数据非常吻合,在肌管中的活性高于成肌细胞或心肌细胞。因此,这些细胞内转运的差异为 DMD 模型中心肌组织与骨骼肌组织中外显子跳跃活性和抗肌萎缩蛋白恢复的差异提供了一种可能的机制解释。总体而言,Pip6a-PMO 是迄今为止最有效的缀合物(低纳摩尔 EC50),即使内体逃逸仍存在限制。