Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawa-Higashi 4-1-1, Kodaira, Tokyo 187-8502, Japan.
Hum Mol Genet. 2013 Dec 15;22(24):4914-28. doi: 10.1093/hmg/ddt341. Epub 2013 Jul 23.
Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is among the more promising approaches to the treatment of several neuromuscular disorders including Duchenne muscular dystrophy. The main weakness of this approach arises from the low efficiency and sporadic nature of the delivery of charge-neutral PMO into muscle fibers, the mechanism of which is unknown. In this study, to test our hypothesis that muscle fibers take up PMO more efficiently during myotube formation, we induced synchronous muscle regeneration by injection of cardiotoxin into the tibialis anterior muscle of Dmd exon 52-deficient mdx52 and wild-type mice. Interestingly, by in situ hybridization, we detected PMO mainly in embryonic myosin heavy chain-positive regenerating fibers. In addition, we showed that PMO or 2'-O-methyl phosphorothioate is taken up efficiently into C2C12 myotubes when transfected 24-72 h after the induction of differentiation but is poorly taken up into undifferentiated C2C12 myoblasts suggesting efficient uptake of PMO in the early stages of C2C12 myotube formation. Next, we tested the therapeutic potential of PMO for laminin-α2 chain-null dy(3K)/dy(3K) mice: a model of merosin-deficient congenital muscular dystrophy (MDC1A) with active muscle regeneration. We confirmed the recovery of laminin-α2 chain and slightly prolonged life span following skipping of the mutated exon 4 in dy(3K)/dy(3K) mice. These findings support the idea that PMO entry into fibers is dependent on a developmental stage in myogenesis rather than on dystrophinless muscle membranes and provide a platform for developing PMO-mediated therapies for a variety of muscular disorders, such as MDC1A, that involve active muscle regeneration.
磷酰胺二酯吗啉代寡聚物 (PMO)-介导的外显子跳跃是治疗包括杜氏肌营养不良症在内的几种神经肌肉疾病的最有前途的方法之一。这种方法的主要弱点是带电荷的 PMO 进入肌肉纤维的效率低且呈散发性,其机制尚不清楚。在这项研究中,为了验证我们的假设,即在肌管形成过程中肌肉纤维更有效地摄取 PMO,我们通过向 Dmd 外显子 52 缺失的 mdx52 和野生型小鼠的比目鱼肌注射心脏毒素来诱导同步肌肉再生。有趣的是,通过原位杂交,我们在胚胎肌球蛋白重链阳性再生纤维中主要检测到 PMO。此外,我们表明,PMO 或 2'-O-甲基硫代磷酸酯在诱导分化后 24-72 小时转染到 C2C12 肌管中时被有效地摄取,但在未分化的 C2C12 成肌细胞中摄取不良,这表明 PMO 在 C2C12 肌管形成的早期阶段被有效地摄取。接下来,我们测试了 PMO 对层粘连蛋白-α2 链缺失 dy(3K)/dy(3K) 小鼠的治疗潜力:一种肌营养不良蛋白缺失的先天性肌肉营养不良症 (MDC1A) 模型,具有活跃的肌肉再生。我们证实,在 dy(3K)/dy(3K) 小鼠中外显子 4 发生突变后,层粘连蛋白-α2 链得到恢复,寿命略有延长。这些发现支持 PMO 进入纤维取决于肌发生的发育阶段而不是无肌营养不良蛋白的肌膜的观点,并为开发针对各种肌肉疾病(如涉及活跃肌肉再生的 MDC1A)的 PMO 介导的治疗方法提供了一个平台。