School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan ; Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
Beilstein J Nanotechnol. 2013 Dec 11;4:875-85. doi: 10.3762/bjnano.4.99.
Ultraflat surface substrates are required to achieve an optimal performance of future optical, electronic, or optoelectronic devices for various applications, because such surfaces reduce the scattering loss of photons, electrons, or both at the surfaces and interfaces. In this paper, we review recent progress toward the realization of ultraflat materials surfaces. First, we review the development of surface-flattening techniques. Second, we briefly review the dressed photon-phonon (DPP), a nanometric quasiparticle that describes the coupled state of a photon, an electron, and a multimode-coherent phonon. Then, we review several recent developments based on DPP-photochemical etching and desorption processes, which have resulted in angstrom-scale flat surfaces. To confirm that the superior flatness of these surfaces that originated from the DPP process, we also review a simplified mathematical model that describes the scale-dependent effects of optical near-fields. Finally, we present the future outlook for these technologies.
超平整表面衬底对于实现未来各种应用的光学、电子或光电设备的最佳性能是必需的,因为这样的表面可以降低光子、电子或两者在表面和界面处的散射损耗。在本文中,我们综述了实现超平整材料表面的最新进展。首先,我们综述了表面平整化技术的发展。其次,我们简要回顾了 dressed photon-phonon(DPP),这是一种描述光子、电子和多模相干声子耦合态的纳米级准粒子。然后,我们综述了基于 DPP-光化学刻蚀和脱附过程的几个最新进展,这些进展导致了埃级的平整表面。为了确认这些源自 DPP 过程的表面具有优越的平整度,我们还综述了一个简化的数学模型,该模型描述了光学近场的尺度相关效应。最后,我们提出了这些技术的未来展望。