Suppr超能文献

长距离磷酸盐信号传递:系统性调控磷酸盐饥饿响应。

Long-distance call from phosphate: systemic regulation of phosphate starvation responses.

机构信息

Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.

出版信息

J Exp Bot. 2014 Apr;65(7):1817-27. doi: 10.1093/jxb/ert431. Epub 2013 Dec 24.

Abstract

Phosphate (Pi) is an essential nutrient for plants but is normally fixed in soil, which limits plant growth and reproduction. In response to low availability of Pi, shoots and roots react differently but cooperatively to improve Pi acquisition from the rhizosphere and adjust Pi distribution and metabolism within plants. Shoot and root responses are coordinated by the trafficking of various kinds of systemic signals through the vasculature. Mutual communication between different tissues is necessary to integrate the environmental stimuli with the internal cues at the whole-plant level. Different approaches have been used to monitor or manipulate components in the vascular stream to reveal several candidates of systemic signals from roots or shoots, including photosynthates, phytohormones, microRNAs, and Pi. In addition, the downstream signalling pathways mediated by these signals have been discovered. The crosstalk among different signalling pathways has been revealed, showing the complexity of the Pi signalling network. In this review, we summarize the approaches used for studying systemic signalling and discuss recent progress and challenges in investigating the systemic signalling pathway that integrates Pi starvation responses to maintain Pi at physiological concentrations. Knowledge gained from this study may help improve the phosphorus use efficiency of crops.

摘要

磷酸盐(Pi)是植物必需的营养物质,但通常在土壤中固定,这限制了植物的生长和繁殖。为了应对 Pi 的低可用性,地上部分和根系以不同但协同的方式反应,以改善从根际吸收 Pi,并调整植物体内 Pi 的分布和代谢。通过脉管系统运输各种系统信号来协调地上部分和根系的反应。不同组织之间的相互通讯对于将环境刺激与整个植物水平的内部线索结合起来是必要的。已经使用了不同的方法来监测或操纵脉管流中的成分,以从根或地上部分揭示几种系统信号候选物,包括光合作用产物、植物激素、microRNAs 和 Pi。此外,还发现了这些信号介导的下游信号通路。不同信号通路之间的串扰已经被揭示出来,显示了 Pi 信号网络的复杂性。在这篇综述中,我们总结了用于研究系统信号的方法,并讨论了研究整合 Pi 饥饿反应以维持 Pi 在生理浓度的系统信号通路的最新进展和挑战。从这项研究中获得的知识可能有助于提高作物的磷利用效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验