From the Atlanta Veterans Administration Medical Center, Atlanta, Georgia 30033 and.
J Biol Chem. 2014 Feb 21;289(8):4896-905. doi: 10.1074/jbc.M113.514869. Epub 2013 Dec 26.
Hypertrophy is an adaptive response that enables organs to appropriately meet increased functional demands. Previously, we reported that calcineurin (Cn) is required for glomerular and whole kidney hypertrophy in diabetic rodents (Gooch, J. L., Barnes, J. L., Garcia, S., and Abboud, H. E. (2003). Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am. J. Physiol. Renal Physiol. 284, F144-F154; Reddy, R. N., Knotts, T. L., Roberts, B. R., Molkentin, J. D., Price, S. R., and Gooch, J. L. (2011). Calcineurin Aβ is required for hypertrophy but not matrix expansion in the diabetic kidney. J. Cell Mol. Med. 15, 414-422). Because studies have also implicated the reactive oxygen species-generating enzymes NADPH oxidases (Nox) in diabetic kidney responses, we tested the hypothesis that Nox and Cn cooperate in a common signaling pathway. First, we examined the role of the two main isoforms of Cn in hypertrophic signaling. Using primary kidney cells lacking a catalytic subunit of Cn (CnAα(-/-) or CnAβ(-/-)), we found that high glucose selectively activates CnAβ, whereas CnAα is constitutively active. Furthermore, CnAβ but not CnAα mediates hypertrophy. Next, we found that chronic reactive oxygen species generation in response to high glucose is attenuated in CnAβ(-/-) cells, suggesting that Cn is upstream of Nox. Consistent with this, loss of CnAβ reduces basal expression and blocks high glucose induction of Nox2 and Nox4. Inhibition of nuclear factor of activated T cells (NFAT), a CnAβ-regulated transcription factor, decreases Nox2 and Nox4 expression, whereas NFAT overexpression increases Nox2 and Nox4, indicating that the CnAβ/NFAT pathway modulates Nox. These data reveal that the CnAβ/NFAT pathway regulates Nox and plays an important role in high glucose-mediated hypertrophic responses in the kidney.
肥大是一种适应性反应,使器官能够适当满足功能需求的增加。此前,我们报道钙调神经磷酸酶(Cn)在糖尿病啮齿动物的肾小球和整个肾脏肥大中是必需的(Gooch,J. L.,Barnes,J. L.,Garcia,S.和Abboud,H. E.(2003)。钙调神经磷酸酶在糖尿病中被激活,并且是肾小球肥大和 ECM 积累所必需的。Am. J. Physiol. Renal Physiol. 284,F144-F154;Reddy,R. N.,Knotts,T. L.,Roberts,B. R.,Molkentin,J. D.,Price,S. R.和Gooch,J. L.(2011)。钙调神经磷酸酶 Aβ在糖尿病肾脏中是肥大所必需的,但不是基质扩张所必需的。J. Cell Mol. Med. 15,414-422)。因为研究还暗示活性氧产生酶 NADPH 氧化酶(Nox)在糖尿病肾脏反应中起作用,所以我们测试了 Nox 和 Cn 在共同信号通路中合作的假设。首先,我们研究了 Cn 的两种主要同工型在肥大信号中的作用。使用缺乏 Cn 催化亚基的原代肾细胞(CnAα(-/-)或 CnAβ(-/-)),我们发现高葡萄糖选择性激活 CnAβ,而 CnAα是组成性激活的。此外,CnAβ而不是 CnAα介导肥大。接下来,我们发现高葡萄糖反应中慢性活性氧的产生在 CnAβ(-/-)细胞中减弱,这表明 Cn 在 Nox 之前。与此一致的是,CnAβ 的缺失降低了基础表达并阻断了高葡萄糖诱导的 Nox2 和 Nox4。核因子活化 T 细胞(NFAT)的抑制,一种 CnAβ 调节的转录因子,降低了 Nox2 和 Nox4 的表达,而 NFAT 的过表达增加了 Nox2 和 Nox4,表明 CnAβ/NFAT 途径调节 Nox。这些数据表明,CnAβ/NFAT 途径调节 Nox,并在肾脏中高葡萄糖介导的肥大反应中起重要作用。