Suppr超能文献

高压大气压冷等离子体对细菌的灭活作用:工艺参数的影响及对细胞渗漏和 DNA 的影响。

Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA.

出版信息

J Appl Microbiol. 2014 Apr;116(4):784-94. doi: 10.1111/jam.12426. Epub 2014 Jan 21.

Abstract

AIMS

This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined.

METHODS AND RESULTS

10(8) CFU ml(-1) E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP-treated in 10 ml phosphate-buffered saline (PBS). Working gas mixtures used were air (gas mix 1), 90% N2 + 10% O2 (gas mix 2) and 65% O2 + 30% CO2 + 5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance, and DNA damage was monitored using PCR and gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s.

CONCLUSIONS

Plasma treatment was effective for inactivation of challenge micro-organisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains attributed to the membrane structure and potential resistance mechanisms.

SIGNIFICANCE AND IMPACT OF THE STUDY

Using atmospheric air as working gas resulted in useful inactivation by comparison with high nitrogen or high oxygen mix. The mechanism of inactivation was a function of treatment duration and cell membrane characteristics, thus offering potential for optimized process parameters specific to the microbial challenge.

摘要

目的

本研究调查了一系列大气冷等离子体(ACP)处理参数对细菌失活的影响,并进一步研究了选定参数对细胞膜完整性和 DNA 损伤的影响。考察了高压水平、暴露方式、气体混合物和处理时间对大肠杆菌和单核细胞增生李斯特菌的影响。

方法和结果

将 10(8) CFU ml(-1) 的大肠杆菌 ATCC 25922、大肠杆菌 NCTC 12900 和单核细胞增生李斯特菌 NCTC11994 用 ACP 处理 10 ml 磷酸盐缓冲液(PBS)。使用的工作气体混合物为空气(气体混合物 1)、90%N2+10%O2(气体混合物 2)和 65%O2+30%CO2+5%N2(气体混合物 3)。所有菌株在使用更高的 70 kVRMS 电压和更高氧气含量的工作气体混合物以及直接暴露的情况下,观察到更高的存活率降低。间接 ACP 暴露 30 s 可使两种大肠杆菌菌株的失活检测不到。30 s 内,单核细胞增生李斯特菌的失活与暴露方式无关。用 A260 吸光度评估泄漏,用 PCR 和凝胶电泳监测 DNA 损伤。5 s 后细胞膜完整性受损,30 s 后明显的 DNA 损伤也取决于靶细胞。

结论

等离子体处理对挑战微生物的失活有效,单核细胞增生李斯特菌的敏感性更高。不同细菌菌株观察到不同的损伤模式,这归因于细胞膜结构和潜在的耐药机制。

意义和影响

与高氮或高氧混合相比,使用空气作为工作气体可获得有用的失活效果。失活机制是处理时间和细胞膜特性的函数,因此为特定于微生物挑战的优化工艺参数提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验