Suppr超能文献

通过 blipped-CAIPI 采集方案提高磁共振逆成像的空间分辨率。

Improving the spatial resolution of magnetic resonance inverse imaging via the blipped-CAIPI acquisition scheme.

作者信息

Chang Wei-Tang, Setsompop Kawin, Ahveninen Jyrki, Belliveau John W, Witzel Thomas, Lin Fa-Hsuan

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.

出版信息

Neuroimage. 2014 May 1;91:401-11. doi: 10.1016/j.neuroimage.2013.12.037. Epub 2013 Dec 27.

Abstract

Using simultaneous acquisition from multiple channels of a radio-frequency (RF) coil array, magnetic resonance inverse imaging (InI) achieves functional MRI acquisitions at a rate of 100ms per whole-brain volume. InI accelerates the scan by leaving out partition encoding steps and reconstructs images by solving under-determined inverse problems using RF coil sensitivity information. Hence, the correlated spatial information available in the coil array causes spatial blurring in the InI reconstruction. Here, we propose a method that employs gradient blips in the partition encoding direction during the acquisition to provide extra spatial encoding in order to better differentiate signals from different partitions. According to our simulations, this blipped-InI (bInI) method can increase the average spatial resolution by 15.1% (1.3mm) across the whole brain and from 32.6% (4.2mm) in subcortical regions, as compared to the InI method. In a visual fMRI experiment, we demonstrate that, compared to InI, the spatial distribution of bInI BOLD response is more consistent with that of a conventional echo-planar imaging (EPI) at the level of individual subjects. With the improved spatial resolution, especially in subcortical regions, bInI can be a useful fMRI tool for obtaining high spatiotemporal information for clinical and cognitive neuroscience studies.

摘要

磁共振逆成像(InI)通过同时采集来自射频(RF)线圈阵列多个通道的数据,以每全脑体积100毫秒的速率实现功能磁共振成像采集。InI通过省略分区编码步骤来加速扫描,并利用RF线圈灵敏度信息求解欠定逆问题来重建图像。因此,线圈阵列中可用的相关空间信息会导致InI重建中的空间模糊。在此,我们提出一种方法,在采集过程中在分区编码方向上采用梯度尖峰,以提供额外的空间编码,以便更好地区分来自不同分区的信号。根据我们的模拟,与InI方法相比,这种带尖峰的InI(bInI)方法可使全脑平均空间分辨率提高15.1%(1.3毫米),在皮质下区域提高32.6%(4.2毫米)。在一项视觉功能磁共振成像实验中,我们证明,与InI相比,在个体受试者层面,bInI血氧水平依赖(BOLD)反应的空间分布与传统回波平面成像(EPI)的更一致。随着空间分辨率的提高,尤其是在皮质下区域,bInI可以成为一种有用的功能磁共振成像工具,用于为临床和认知神经科学研究获取高时空信息。

相似文献

1
Improving the spatial resolution of magnetic resonance inverse imaging via the blipped-CAIPI acquisition scheme.
Neuroimage. 2014 May 1;91:401-11. doi: 10.1016/j.neuroimage.2013.12.037. Epub 2013 Dec 27.
2
Simultaneous multi-slice inverse imaging of the human brain.
Sci Rep. 2017 Dec 5;7(1):17019. doi: 10.1038/s41598-017-16976-0.
3
Multi-projection magnetic resonance inverse imaging of the human visuomotor system.
Neuroimage. 2012 May 15;61(1):304-13. doi: 10.1016/j.neuroimage.2012.01.115. Epub 2012 Feb 4.
4
Simultaneous Multi-Slice fMRI using spiral trajectories.
Neuroimage. 2014 May 15;92:8-18. doi: 10.1016/j.neuroimage.2014.01.056. Epub 2014 Feb 8.
5
Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging.
Neuroimage. 2012 May 15;61(1):115-30. doi: 10.1016/j.neuroimage.2012.02.059. Epub 2012 Feb 28.
7
A circular echo planar sequence for fast volumetric fMRI.
Magn Reson Med. 2019 Mar;81(3):1685-1698. doi: 10.1002/mrm.27522. Epub 2018 Oct 1.
8
Whole-head rapid fMRI acquisition using echo-shifted magnetic resonance inverse imaging.
Neuroimage. 2013 Sep;78:325-38. doi: 10.1016/j.neuroimage.2013.03.040. Epub 2013 Apr 4.
9
GRAPPA reconstructed wave-CAIPI MP-RAGE at 7 Tesla.
Magn Reson Med. 2018 Dec;80(6):2427-2438. doi: 10.1002/mrm.27215. Epub 2018 Apr 16.
10
Rapid brain MRI acquisition techniques at ultra-high fields.
NMR Biomed. 2016 Sep;29(9):1198-221. doi: 10.1002/nbm.3478. Epub 2016 Feb 2.

引用本文的文献

1
15 Years MR-encephalography.
MAGMA. 2021 Feb;34(1):85-108. doi: 10.1007/s10334-020-00891-z. Epub 2020 Oct 20.
3
Simultaneous multislice (SMS) imaging techniques.
Magn Reson Med. 2016 Jan;75(1):63-81. doi: 10.1002/mrm.25897. Epub 2015 Aug 26.

本文引用的文献

1
2
fMRI hemodynamics accurately reflects neuronal timing in the human brain measured by MEG.
Neuroimage. 2013 Sep;78:372-84. doi: 10.1016/j.neuroimage.2013.04.017. Epub 2013 Apr 13.
3
Whole-head rapid fMRI acquisition using echo-shifted magnetic resonance inverse imaging.
Neuroimage. 2013 Sep;78:325-38. doi: 10.1016/j.neuroimage.2013.03.040. Epub 2013 Apr 4.
4
Tracking dynamic resting-state networks at higher frequencies using MR-encephalography.
Neuroimage. 2013 Jan 15;65:216-22. doi: 10.1016/j.neuroimage.2012.10.015. Epub 2012 Oct 13.
5
Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging.
Neuroimage. 2012 May 15;61(1):115-30. doi: 10.1016/j.neuroimage.2012.02.059. Epub 2012 Feb 28.
6
Multi-projection magnetic resonance inverse imaging of the human visuomotor system.
Neuroimage. 2012 May 15;61(1):304-13. doi: 10.1016/j.neuroimage.2012.01.115. Epub 2012 Feb 4.
7
Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER.
Neuroimage. 2012 Apr 2;60(2):1517-27. doi: 10.1016/j.neuroimage.2012.01.067. Epub 2012 Jan 18.
8
Physiological noise reduction using volumetric functional magnetic resonance inverse imaging.
Hum Brain Mapp. 2012 Dec;33(12):2815-30. doi: 10.1002/hbm.21403. Epub 2011 Sep 23.
10
Anatomical and functional assemblies of brain BOLD oscillations.
J Neurosci. 2011 May 25;31(21):7910-9. doi: 10.1523/JNEUROSCI.1296-11.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验