Suppr超能文献

同时激发切片的三维傅里叶编码:通用采集与重建框架

Three-dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework.

作者信息

Zahneisen Benjamin, Poser Benedikt A, Ernst Thomas, Stenger V Andrew

机构信息

Department of Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii, USA.

出版信息

Magn Reson Med. 2014 Jun;71(6):2071-81. doi: 10.1002/mrm.24875. Epub 2013 Jul 22.

Abstract

PURPOSE

Simultaneous multislice (SMS) acquisitions have recently received much attention as a means of increasing single-shot imaging speed. SMS acquisitions combine the advantages of single-shot sampling and acceleration along the slice dimension which was previously limited to three-dimensional (3D) volumetric acquisitions. A two-dimensional description of SMS sampling and reconstruction has become established in the literature. Here, we present a more general 3D Fourier encoding and reconstruction formalism for SMS acquisitions that can easily be applied to non-Cartesian SMS acquisitions.

THEORY AND METHODS

An "SMS 3D" k-space is defined in which the field of view along the slice select direction is equal to the number of excited slices times their separation. In this picture, SMS acceleration can be viewed as an undersampling of SMS 3D k-space that can be freely distributed between the in-plane and slice directions as both are effective phase-encoding directions.

RESULTS

Use of the SMS 3D k-space picture is demonstrated in phantom and in vivo brain acquisitions including data obtained with blipped-controlled aliasing in parallel imaging sampling. SMS sensitivity encoding reconstruction is demonstrated as well as non-Cartesian SMS imaging using blipped spiral trajectories.

CONCLUSIONS

The full framework of reconstruction methods can be applied to SMS acquisitions by employing a 3D k-space approach. The blipped-controlled aliasing in parallel imaging method can be viewed as a special case of undersampling an SMS 3D k-space. The extension of SMS methods to non-Cartesian 3D sampling and reconstruction is straightforward.

摘要

目的

同时多切片(SMS)采集作为一种提高单次成像速度的方法,近来备受关注。SMS采集结合了单次采样的优势以及沿切片维度的加速技术,而该技术此前仅限于三维(3D)容积采集。文献中已确立了SMS采样与重建的二维描述。在此,我们提出一种更通用的用于SMS采集的3D傅里叶编码与重建形式体系,它可轻松应用于非笛卡尔SMS采集。

理论与方法

定义了一个“SMS 3D”k空间,其中沿切片选择方向的视野等于激发切片数量乘以它们的间距。在此框架下,SMS加速可视为对SMS 3D k空间的欠采样,由于面内方向和切片方向均为有效的相位编码方向,所以这种欠采样可在这两个方向上自由分配。

结果

在体模和活体脑部采集中展示了SMS 3D k空间图像的应用,包括通过并行成像采样中的可控相位编码混叠获得的数据。展示了SMS灵敏度编码重建以及使用可控相位编码螺旋轨迹的非笛卡尔SMS成像。

结论

通过采用3D k空间方法,完整的重建方法框架可应用于SMS采集。并行成像中的可控相位编码混叠方法可视为对SMS 3D k空间欠采样的一种特殊情况。将SMS方法扩展到非笛卡尔3D采样与重建很简单。

相似文献

1
3
SENSE and simultaneous multislice imaging.
Magn Reson Med. 2015 Nov;74(5):1356-62. doi: 10.1002/mrm.25519. Epub 2014 Nov 5.
4
A circular echo planar sequence for fast volumetric fMRI.
Magn Reson Med. 2019 Mar;81(3):1685-1698. doi: 10.1002/mrm.27522. Epub 2018 Oct 1.
6
Simultaneous Multi-Slice fMRI using spiral trajectories.
Neuroimage. 2014 May 15;92:8-18. doi: 10.1016/j.neuroimage.2014.01.056. Epub 2014 Feb 8.
7
Simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) with direct-spiral slice-GRAPPA (ds-SG) reconstruction.
Magn Reson Med. 2017 May;77(5):1966-1974. doi: 10.1002/mrm.26271. Epub 2016 May 25.
10
Accelerating magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) acquisition.
Magn Reson Med. 2016 May;75(5):2078-85. doi: 10.1002/mrm.25799. Epub 2015 Jun 8.

引用本文的文献

2
Accelerated multi-shell diffusion MRI with Gaussian process estimated reconstruction of multi-band imaging.
Magn Reson Med. 2025 Aug;94(2):694-712. doi: 10.1002/mrm.30518. Epub 2025 Apr 6.
4
Maximizing SNR per unit time in diffusion MRI with multiband T-Hex spirals.
Magn Reson Med. 2024 Apr;91(4):1323-1336. doi: 10.1002/mrm.29953. Epub 2023 Dec 29.
6
OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography.
Magn Reson Med. 2022 Oct;88(4):1659-1672. doi: 10.1002/mrm.29308. Epub 2022 Jun 1.
7
Simultaneous Multi-Slice Cardiac MR Multitasking for Motion-Resolved, Non-ECG, Free-Breathing T1-T2 Mapping.
Front Cardiovasc Med. 2022 Mar 4;9:833257. doi: 10.3389/fcvm.2022.833257. eCollection 2022.
8
Simultaneous Multislice Brain MRI T1 Mapping with Improved Low-Rank Modeling.
Tomography. 2021 Oct 7;7(4):545-554. doi: 10.3390/tomography7040047.
9
Mono-planar T-Hex: Speed and flexibility for high-resolution 3D imaging.
Magn Reson Med. 2022 Jan;87(1):272-280. doi: 10.1002/mrm.28979. Epub 2021 Aug 16.
10
Diffusion Imaging in the Post HCP Era.
J Magn Reson Imaging. 2021 Jul;54(1):36-57. doi: 10.1002/jmri.27247. Epub 2020 Jun 20.

本文引用的文献

1
The rapid development of high speed, resolution and precision in fMRI.
Neuroimage. 2012 Aug 15;62(2):720-5. doi: 10.1016/j.neuroimage.2012.01.049. Epub 2012 Jan 14.
2
Fast undersampled functional magnetic resonance imaging using nonlinear regularized parallel image reconstruction.
PLoS One. 2011;6(12):e28822. doi: 10.1371/journal.pone.0028822. Epub 2011 Dec 14.
3
Single shot concentric shells trajectories for ultra fast fMRI.
Magn Reson Med. 2012 Aug;68(2):484-94. doi: 10.1002/mrm.23256. Epub 2011 Nov 30.
5
Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.
PLoS One. 2010 Dec 20;5(12):e15710. doi: 10.1371/journal.pone.0015710.
8
On NUFFT-based gridding for non-Cartesian MRI.
J Magn Reson. 2007 Oct;188(2):191-5. doi: 10.1016/j.jmr.2007.06.012. Epub 2007 Jul 14.
9
Improved echo volumar imaging (EVI) for functional MRI.
Magn Reson Med. 2006 Dec;56(6):1320-7. doi: 10.1002/mrm.21080.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验