Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV Angers, France.
Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV Angers, France.
Front Plant Sci. 2013 Dec 11;4:497. doi: 10.3389/fpls.2013.00497. eCollection 2013.
Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed.
耐旱性(DT)是指能够承受细胞水分完全丧失的能力。它是在种子填充过程中获得的,在发芽后立即失去。然而,在许多物种中,在诸如渗透胁迫等不利条件下,已发芽的种子可以重新获得 DT。建立这种 DT 所需的基因、蛋白质和代谢物被称为干燥组。它包括一系列保护机制和基础调节途径,这些途径仍知之甚少。作为鉴定蒺藜苜蓿种子干燥组的第一步,我们使用更新的微阵列,在种子发育过程中鉴定与 DT 获得相关的重叠转录组,并在聚乙二醇处理(-1.7 MPa)下重新建立 DT。结果列表包含分别增加和减少 DT 的 740 个和 2829 个转录本。鉴定了 48 个转录因子(TF),包括 MtABI3、MtABI5 和许多调节开花过渡和细胞身份的基因。启动子富集分析显示 ABRE 元件与光反应顺式作用元件的强烈过表达。在 Mtabi5 Tnt1 插入突变体中,渗透胁迫后不再能够重新建立 DT。在渗透胁迫下对 Mtabi5 幼根进行转录组分析,发现分别有 13%和 15%的上调和下调基因在突变体中失调,可能是 MtABI5 重新建立 DT 的下游潜在靶点。同样,对敏感型 Mtabi3 突变体和异位表达 MtABI3 的毛状根的转录组比较表明,分别有 35%和 23%的上调和下调基因是 MtABI3 的下游作用。我们的数据表明,ABI3 和 ABI5 在 DT 中具有互补作用。是否 DT 通过利用调节开花和细胞相转变和细胞身份的现有途径进化,这一点有待讨论。