Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria , Lynnwood Road, Pretoria 0002, South Africa.
J Phys Chem A. 2014 Jan 23;118(3):623-37. doi: 10.1021/jp410744x. Epub 2014 Jan 9.
In the present account factors determining the stability of ZnL, ZnL2, and ZnL3 complexes (L = bpy, 2,2′-bipyridyl) were characterized on the basis of various techniques: the quantum theory of atoms in molecules (QTAIM), energy decomposition schemes based on interacting quantum atoms (IQA), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV). Finally, the noncovalent interactions (NCI) index was also applied. All methods consistently indicated that the strength of the coordination bonds, Zn–O and Zn–N, decreases from ZnL to ZnL3. Importantly, it has been identified that the strength of secondary intramolecular heteropolar hydrogen bonding interactions, CH···O and CH···N, increases when going from ZnL to ZnL3. A similar trend appeared to be valid for the π-bonding as well as electrostatic stabilization. In addition to the above leading bonding contributions, all techniques suggested the existence of very subtle, but non-negligible additional stabilization from the CH···HC electronic exchange channel; these interactions are the weakest among all considered here. From IQA it was found that the local diatomic interaction energy, Eint(H,H), amounts at HF to −2.5, −2.7, and −2.9 kcal mol(–1) for ZnL, ZnL2, and ZnL3, respectively (−2.1 kcal mol(–1) for ZnL at MP2). NOCV-based deformation density channels showed that formation of CH--HC contacts in Zn complexes causes significant polarization of σ(C–H) bonds, which accordingly leads to charge accumulation in the CH···HC bay region. Charge depletion from σ(C–H) bonds was also reflected in the calculated spin–spin (1)J(C–H) coupling constants, which decrease from 177.06 Hz (ZnL) to 173.87 Hz (ZnL3). This last result supports our findings of an increase in the local electronic CH···HC stabilization from ZnL to ZnL3 found from QTAIM, IQA, and ETS-NOCV. Finally, this work unites for the first time the results from four methods that are widely used for description of chemical bonding.
在本研究中,基于各种技术(原子理论中的量子理论(QTAIM)、基于相互作用量子原子的能量分解方案(IQA)、扩展过渡态与自然轨道化学价(ETS-NOCV)相结合),对决定 ZnL、ZnL2 和 ZnL3 配合物稳定性的因素进行了研究。最后,还应用了非共价相互作用(NCI)指数。所有方法都一致表明,Zn-O 和 Zn-N 的配位键强度从 ZnL 降低到 ZnL3。重要的是,已经确定,从 ZnL 到 ZnL3,CH···O 和 CH···N 之间的二级分子内异极性氢键相互作用的强度增加。对于π键合以及静电稳定化,也出现了类似的趋势。除了上述主要键合贡献之外,所有技术都表明,存在非常微妙但不可忽略的来自 CH···HC 电子交换通道的额外稳定化;这些相互作用在所有考虑的相互作用中是最弱的。从 IQA 中发现,HF 时, Eint(H,H) 的局部双原子相互作用能分别为 ZnL、ZnL2 和 ZnL3 的-2.5、-2.7 和-2.9 kcal mol(-1)(MP2 时 ZnL 为-2.1 kcal mol(-1))。基于 NOCV 的变形密度通道表明,Zn 配合物中 CH--HC 接触的形成导致 σ(C–H)键的显著极化,这相应地导致 CH···HC 湾区域的电荷积累。σ(C–H)键的电荷耗尽也反映在计算出的自旋-自旋(1)J(C–H)耦合常数中,该常数从 177.06 Hz(ZnL)降低到 173.87 Hz(ZnL3)。最后一个结果支持了我们从 QTAIM、IQA 和 ETS-NOCV 发现的从 ZnL 到 ZnL3 增加局部电子 CH···HC 稳定化的发现。最后,这项工作首次将四种广泛用于描述化学键的方法的结果结合在一起。