From the Departamento de Bioquímica and.
J Biol Chem. 2014 Feb 21;289(8):5228-39. doi: 10.1074/jbc.M113.510248. Epub 2013 Dec 30.
Mycobacterium tuberculosis (M. tuberculosis), the pathogen responsible for tuberculosis, detoxifies cytotoxic peroxides produced by activated macrophages. M. tuberculosis expresses alkyl hydroxyperoxide reductase E (AhpE), among other peroxiredoxins. So far the system that reduces AhpE was not known. We identified M. tuberculosis mycoredoxin-1 (MtMrx1) acting in combination with mycothiol and mycothiol disulfide reductase (MR), as a biologically relevant reducing system for MtAhpE. MtMrx1, a glutaredoxin-like, mycothiol-dependent oxidoreductase, directly reduces the oxidized form of MtAhpE, through a protein mixed disulfide with the N-terminal cysteine of MtMrx1 and the sulfenic acid derivative of the peroxidatic cysteine of MtAhpE. This disulfide is then reduced by the C-terminal cysteine in MtMrx1. Accordingly, MtAhpE catalyzes the oxidation of wt MtMrx1 by hydrogen peroxide but not of MtMrx1 lacking the C-terminal cysteine, confirming a dithiolic mechanism. Alternatively, oxidized MtAhpE forms a mixed disulfide with mycothiol, which in turn is reduced by MtMrx1 using a monothiolic mechanism. We demonstrated the H2O2-dependent NADPH oxidation catalyzed by MtAhpE in the presence of MR, Mrx1, and mycothiol. Disulfide formation involving mycothiol probably competes with the direct reduction by MtMrx1 in aqueous intracellular media, where mycothiol is present at millimolar concentrations. However, MtAhpE was found to be associated with the membrane fraction, and since mycothiol is hydrophilic, direct reduction by MtMrx1 might be favored. The results reported herein allow the rationalization of peroxide detoxification actions inferred for mycothiol, and more recently, for Mrx1 in cellular systems. We report the first molecular link between a thiol-dependent peroxidase and the mycothiol/Mrx1 pathway in Mycobacteria.
结核分枝杆菌(Mycobacterium tuberculosis,M. tuberculosis)是导致结核病的病原体,它能使激活的巨噬细胞产生的细胞毒性过氧化物解毒。M. tuberculosis 表达烷基羟过氧化物还原酶 E(AhpE)和其他过氧化物酶。迄今为止,还原 AhpE 的系统尚不清楚。我们发现 M. tuberculosis 巯基还原酶 1(MtMrx1)与巯基乙硫醇和巯基乙硫醇二硫化物还原酶(MR)一起,作为 MtAhpE 的生物学相关还原系统。MtMrx1 是一种谷氧还蛋白样的、依赖巯基乙硫醇的氧化还原酶,通过与 MtMrx1 的 N 端半胱氨酸和 MtAhpE 的过氧物酶半胱氨酸的亚磺酸衍生物形成蛋白混合二硫键,直接还原 MtAhpE 的氧化形式。然后,MtMrx1 的 C 端半胱氨酸还原这个二硫键。因此,MtAhpE 催化过氧化氢氧化 wt MtMrx1,但不催化缺乏 C 端半胱氨酸的 MtMrx1,这证实了一个二硫键机制。或者,氧化的 MtAhpE 与巯基乙硫醇形成混合二硫键,然后 MtMrx1 以单硫键机制使用巯基乙硫醇还原它。我们证明了在 MR、Mrx1 和巯基乙硫醇存在下,MtAhpE 催化的 H2O2 依赖的 NADPH 氧化。涉及巯基乙硫醇的二硫键形成可能与 MtMrx1 在水相细胞内介质中的直接还原竞争,因为巯基乙硫醇在细胞内介质中以毫摩尔浓度存在。然而,MtAhpE 被发现与膜部分相关,并且由于巯基乙硫醇是亲水性的,MtMrx1 的直接还原可能更有利。本文报道的结果使我们能够合理化以前在细胞系统中推测的巯基乙硫醇和最近推测的 Mrx1 对过氧化物解毒作用的解释。我们报告了第一个依赖巯基的过氧化物酶与分枝杆菌中巯基乙硫醇/Mrx1 途径之间的分子联系。