Suppr超能文献

分枝杆菌 AhpE 过氧化物酶依赖于分枝菌硫醇/硫氧还蛋白 1 的还原。

Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis.

机构信息

From the Departamento de Bioquímica and.

出版信息

J Biol Chem. 2014 Feb 21;289(8):5228-39. doi: 10.1074/jbc.M113.510248. Epub 2013 Dec 30.

Abstract

Mycobacterium tuberculosis (M. tuberculosis), the pathogen responsible for tuberculosis, detoxifies cytotoxic peroxides produced by activated macrophages. M. tuberculosis expresses alkyl hydroxyperoxide reductase E (AhpE), among other peroxiredoxins. So far the system that reduces AhpE was not known. We identified M. tuberculosis mycoredoxin-1 (MtMrx1) acting in combination with mycothiol and mycothiol disulfide reductase (MR), as a biologically relevant reducing system for MtAhpE. MtMrx1, a glutaredoxin-like, mycothiol-dependent oxidoreductase, directly reduces the oxidized form of MtAhpE, through a protein mixed disulfide with the N-terminal cysteine of MtMrx1 and the sulfenic acid derivative of the peroxidatic cysteine of MtAhpE. This disulfide is then reduced by the C-terminal cysteine in MtMrx1. Accordingly, MtAhpE catalyzes the oxidation of wt MtMrx1 by hydrogen peroxide but not of MtMrx1 lacking the C-terminal cysteine, confirming a dithiolic mechanism. Alternatively, oxidized MtAhpE forms a mixed disulfide with mycothiol, which in turn is reduced by MtMrx1 using a monothiolic mechanism. We demonstrated the H2O2-dependent NADPH oxidation catalyzed by MtAhpE in the presence of MR, Mrx1, and mycothiol. Disulfide formation involving mycothiol probably competes with the direct reduction by MtMrx1 in aqueous intracellular media, where mycothiol is present at millimolar concentrations. However, MtAhpE was found to be associated with the membrane fraction, and since mycothiol is hydrophilic, direct reduction by MtMrx1 might be favored. The results reported herein allow the rationalization of peroxide detoxification actions inferred for mycothiol, and more recently, for Mrx1 in cellular systems. We report the first molecular link between a thiol-dependent peroxidase and the mycothiol/Mrx1 pathway in Mycobacteria.

摘要

结核分枝杆菌(Mycobacterium tuberculosis,M. tuberculosis)是导致结核病的病原体,它能使激活的巨噬细胞产生的细胞毒性过氧化物解毒。M. tuberculosis 表达烷基羟过氧化物还原酶 E(AhpE)和其他过氧化物酶。迄今为止,还原 AhpE 的系统尚不清楚。我们发现 M. tuberculosis 巯基还原酶 1(MtMrx1)与巯基乙硫醇和巯基乙硫醇二硫化物还原酶(MR)一起,作为 MtAhpE 的生物学相关还原系统。MtMrx1 是一种谷氧还蛋白样的、依赖巯基乙硫醇的氧化还原酶,通过与 MtMrx1 的 N 端半胱氨酸和 MtAhpE 的过氧物酶半胱氨酸的亚磺酸衍生物形成蛋白混合二硫键,直接还原 MtAhpE 的氧化形式。然后,MtMrx1 的 C 端半胱氨酸还原这个二硫键。因此,MtAhpE 催化过氧化氢氧化 wt MtMrx1,但不催化缺乏 C 端半胱氨酸的 MtMrx1,这证实了一个二硫键机制。或者,氧化的 MtAhpE 与巯基乙硫醇形成混合二硫键,然后 MtMrx1 以单硫键机制使用巯基乙硫醇还原它。我们证明了在 MR、Mrx1 和巯基乙硫醇存在下,MtAhpE 催化的 H2O2 依赖的 NADPH 氧化。涉及巯基乙硫醇的二硫键形成可能与 MtMrx1 在水相细胞内介质中的直接还原竞争,因为巯基乙硫醇在细胞内介质中以毫摩尔浓度存在。然而,MtAhpE 被发现与膜部分相关,并且由于巯基乙硫醇是亲水性的,MtMrx1 的直接还原可能更有利。本文报道的结果使我们能够合理化以前在细胞系统中推测的巯基乙硫醇和最近推测的 Mrx1 对过氧化物解毒作用的解释。我们报告了第一个依赖巯基的过氧化物酶与分枝杆菌中巯基乙硫醇/Mrx1 途径之间的分子联系。

相似文献

1
Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis.
J Biol Chem. 2014 Feb 21;289(8):5228-39. doi: 10.1074/jbc.M113.510248. Epub 2013 Dec 30.
3
Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from .
J Biol Chem. 2019 Sep 13;294(37):13593-13605. doi: 10.1074/jbc.RA119.008883. Epub 2019 Jul 16.
6
Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria.
Mol Microbiol. 2012 Nov;86(4):787-804. doi: 10.1111/mmi.12030. Epub 2012 Sep 27.
7
The antibacterial prodrug activator Rv2466c is a mycothiol-dependent reductase in the oxidative stress response of .
J Biol Chem. 2017 Aug 11;292(32):13097-13110. doi: 10.1074/jbc.M117.797837. Epub 2017 Jun 15.
8
Chemistry and Redox Biology of Mycothiol.
Antioxid Redox Signal. 2018 Feb 20;28(6):487-504. doi: 10.1089/ars.2017.7074. Epub 2017 May 10.
9
Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange.
J Biol Chem. 2009 May 29;284(22):15107-16. doi: 10.1074/jbc.M900877200. Epub 2009 Mar 13.
10
Structural and mechanistic insights into Mycothiol Disulphide Reductase and the Mycoredoxin-1-alkylhydroperoxide reductase E assembly of Mycobacterium tuberculosis.
Biochim Biophys Acta Gen Subj. 2017 Sep;1861(9):2354-2366. doi: 10.1016/j.bbagen.2017.05.007. Epub 2017 May 10.

引用本文的文献

1
The dithiol mechanism of class I glutaredoxins promotes specificity for glutathione as a reducing agent.
Redox Biol. 2024 Dec;78:103410. doi: 10.1016/j.redox.2024.103410. Epub 2024 Oct 24.
2
3
Relevance of peroxiredoxins in pathogenic microorganisms.
Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5701-5717. doi: 10.1007/s00253-021-11360-5. Epub 2021 Jul 14.
4
Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities.
Redox Biol. 2021 Jun;42:101959. doi: 10.1016/j.redox.2021.101959. Epub 2021 Apr 20.
5
Plasticity of the peroxidase AhpC links multiple substrates to diverse disulfide-reducing pathways in .
J Biol Chem. 2020 Aug 7;295(32):11118-11130. doi: 10.1074/jbc.RA120.014010. Epub 2020 Jun 12.
6
Redox and Thiols in Archaea.
Antioxidants (Basel). 2020 May 5;9(5):381. doi: 10.3390/antiox9050381.
7
Oxidative Stress-Generating Antimicrobials, a Novel Strategy to Overcome Antibacterial Resistance.
Antioxidants (Basel). 2020 Apr 26;9(5):361. doi: 10.3390/antiox9050361.
8
Methionine sulfoxide reductase B from catalyzes sulfoxide reduction via an intramolecular disulfide cascade.
J Biol Chem. 2020 Mar 13;295(11):3664-3677. doi: 10.1074/jbc.RA119.012438. Epub 2020 Jan 28.
9
Mycoredoxins Are Required for Redox Homeostasis and Intracellular Survival in the Actinobacterial Pathogen .
Antioxidants (Basel). 2019 Nov 15;8(11):558. doi: 10.3390/antiox8110558.
10
Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from .
J Biol Chem. 2019 Sep 13;294(37):13593-13605. doi: 10.1074/jbc.RA119.008883. Epub 2019 Jul 16.

本文引用的文献

1
Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
Antioxid Redox Signal. 2014 Feb 1;20(4):589-605. doi: 10.1089/ars.2013.5423. Epub 2013 Sep 18.
3
Low-molecular-weight thiols in thiol-disulfide exchange.
Antioxid Redox Signal. 2013 May 1;18(13):1642-53. doi: 10.1089/ars.2012.4964. Epub 2012 Dec 18.
4
Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria.
Mol Microbiol. 2012 Nov;86(4):787-804. doi: 10.1111/mmi.12030. Epub 2012 Sep 27.
5
Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase.
Biochem J. 2012 Mar 15;442(3):681-92. doi: 10.1042/BJ20111530.
6
Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms.
Mol Microbiol. 2011 Nov;82(4):998-1014. doi: 10.1111/j.1365-2958.2011.07882.x. Epub 2011 Oct 27.
7
Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin.
Biochemistry. 2011 Oct 18;50(41):8970-81. doi: 10.1021/bi200935d. Epub 2011 Sep 21.
8
Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation.
Free Radic Biol Med. 2011 Jul 15;51(2):464-73. doi: 10.1016/j.freeradbiomed.2011.04.023. Epub 2011 Apr 17.
10
Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2729-34. doi: 10.1073/pnas.1010721108. Epub 2011 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验