Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India.
Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India.
Redox Biol. 2024 Sep;75:103285. doi: 10.1016/j.redox.2024.103285. Epub 2024 Jul 31.
The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (NO) and superoxide (O) produced by phagocytes contributes to its success as a human pathogen. Recombination of NO and O generates peroxynitrite (ONOO), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward NO and O is well established, how Mtb responds to ONOO remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both NO and O, which should combine to produce ONOO. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe-4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe-4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe-S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO and targeting Fe-S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).
结核分枝杆菌 (Mtb) 耐受吞噬细胞产生的一氧化氮 (NO) 和超氧化物 (O) 的能力使其成为人类病原体的成功因素。NO 和 O 的重组产生过氧亚硝酸盐 (ONOO),这是一种在激活的巨噬细胞内产生的强氧化剂,导致各种生物体的致死性。虽然 Mtb 对 NO 和 O 的反应已经得到很好的证实,但 Mtb 对 ONOO 的反应仍不清楚。填补这一知识空白对于了解 Mtb 在感染过程中的持续存在机制非常重要。我们合成了一系列产生 NO 和 O 的化合物,它们应该结合起来产生 ONOO。从这个文库中,我们确定了 CJ067,它可以穿透 Mtb,可靠地提高细胞内的 ONOO 水平。暴露于 CJ067 的 Mtb 菌株,包括耐多药 (MDR) 和广泛耐药 (XDR) 临床分离株,表现出剂量依赖性、持久的氧化应激和生长抑制。相比之下,快速生长、非致病性分枝杆菌物种 Mycobacterium smegmatis (Msm) 能够维持氧化还原平衡和生长,以应对细胞内的 ONOO。用 Mtb 进行的 RNA 测序显示,CJ067 诱导抗氧化机制、硫代谢、金属稳态和 4Fe-4S 簇修复途径 (suf 操纵子)。CJ067 损害了含有 4Fe-4S 簇的 TCA 循环酶 aconitase 的活性,并降低了 Mtb 的生物能量。与参与 Fe-S 簇生物发生途径的 Mtb 菌株缺陷型 SUF 和 IscS 的工作表明,这两个系统在体外协同保护 Mtb 免受细胞内 ONOO 的侵害,并在巨噬细胞感染期间抑制诱导型一氧化氮合酶 (iNOS) 依赖性生长抑制。因此,Mtb 对细胞内 ONOO 非常敏感,靶向 Fe-S 簇稳态有望促进 iNOS 依赖性宿主对结核病 (TB) 的免疫。