De-Leung Gu, Yen-Hsieh Chen, Jou-Ho Shih, Yuh-Shan Jou, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
World J Gastroenterol. 2013 Dec 21;19(47):8873-9. doi: 10.3748/wjg.v19.i47.8873.
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.
高通量短读测序技术对多个人类肝细胞癌 (HCC) 队列的外显子组和全癌症基因组进行了测序,证实了之前已确定的频繁突变的体细胞基因,如 TP53、CTNNB1 和 AXIN1,同时还鉴定出了一些具有中等突变频率的新基因,包括 ARID1A、ARID2、MLL、MLL2、MLL3、MLL4、IRF2、ATM、CDKN2A、FGF19、PIK3CA、RPS6KA3、JAK1、KEAP1、NFE2L2、C16orf62、LEPR、RAC2 和 IL6ST。这些突变基因的功能分类表明,参与染色质重塑、Wnt/β-catenin 信号转导、JAK/STAT 信号转导和氧化应激的途径的改变在 HCC 肿瘤发生中起着关键作用。然而,由于 HCC 治疗中使用的药物靶点很少,因此通过整合基因组方法来鉴定新的治疗靶点仍然是一项重要任务。由于大量经高密度单核苷酸多态性芯片检测的 HCC 基因组数据已存入公共数据库,因此对这些芯片进行拷贝数改变 (CNA) 分析是一种通过对 HCC 进展过程中积累的反复出现和重叠的扩增子、纯合性缺失和潜在的非平衡染色体易位进行分析来揭示靶基因的经济有效的方法。此外,将 CNA 与其他高通量基因组数据(如人类 HCC 组织和啮齿动物 HCC 模型中的异常编码转录组和非编码基因表达)整合在一起,提供了可以用来促进鉴定具有改善 HCC 患者生存率潜力的新型 HCC 靶基因的证据。