Suppr超能文献

多回波 T2*-加权磁共振图像的自动图谱提取用于改善人脑形态学评估。

Automatic mapping extraction from multiecho T2-star weighted magnetic resonance images for improving morphological evaluations in human brain.

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China ; Shenzhen Key Lab for Low-Cost Healthcare, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, China.

出版信息

Comput Math Methods Med. 2013;2013:202309. doi: 10.1155/2013/202309. Epub 2013 Nov 27.

Abstract

Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM) replaced signal response to time course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM) and the other depicts fluctuation magnitude (FMM). Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the sum of contrast index (CI) from SSM and FMM without manual delineation. Based on four groups of images from multiecho T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological evaluation is validated. Average contrast improvement index (CII) of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42, 2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal investigation, and tissue segmentation.

摘要

图谱提取在医学图像分析中很有用。相似系数图谱(SCM)用多回波 T2*-加权磁共振成像中信号对 TE 变化的响应代替了组织相似性图谱中的信号对时间历程的响应,而无需造影剂。由于不同的组织对参考信号的敏感度不同,因此通过向 SCM 添加敏感度指数,提出了一种新的算法。它生成两个图谱。一个测量相对信号强度(SSM),另一个描述波动幅度(FMM)。同时,新方法通过从 SSM 和 FMM 中最大化对比指数(CI)的总和来自适应地生成适当的参考信号,而无需手动描绘。基于多回波 T2*-加权磁共振成像的四组图像,验证了 SSM 和 FMM 增强图像对比度和形态评估的能力。SSM 的平均对比改善指数(CII)为 1.57、1.38、1.34 和 1.41。FMM 的平均 CII 为 2.42、2.30、2.24 和 2.35。感兴趣区域的视觉分析表明,SSM 和 FMM 比原始图像、T2*-映射和 SCM 显示出更好的形态结构。这些提取的图谱可以进一步应用于信息融合、信号研究和组织分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f950/3863404/ef3db0d1256a/CMMM2013-202309.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验