Department of Bioscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark; Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark; Centre for Geogenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen K, 1350, Denmark.
Mol Ecol. 2014 Feb;23(4):815-31. doi: 10.1111/mec.12644.
Identification of populations and management units is an essential step in the study of natural systems. Still, there is limited consensus regarding how to define populations and management units, and whether genetic methods allow for inference at the relevant spatial and temporal scale. Here, we present a novel approach, integrating genetic, life history and demographic data to identify populations and management units in southern Scandinavian harbour seals. First, 15 microsatellite markers and model- and distance-based genetic clustering methods were used to determine the population genetic structure in harbour seals. Second, we used harbour seal demographic and life history data to conduct population viability analyses (PVAs) in the vortex simulation model in order to determine whether the inferred genetic units could be classified as management units according to Lowe and Allendorf's (Molecular Ecology, 19, 2010, 3038) 'population viability criterion' for demographic independence. The genetic analyses revealed fine-scale population structuring in southern Scandinavian harbour seals and pointed to the existence of several genetic units. The PVAs indicated that the census population size of each of these genetic units was sufficiently large for long-term population viability, and hence that the units could be classified as demographically independent management units. Our study suggests that population genetic inference can offer the same degree of temporal and spatial resolution as 'nongenetic' methods and that the combined use of genetic data and PVAs constitutes a promising approach for delineating populations and management units.
种群和管理单元的识别是自然系统研究的重要步骤。然而,如何定义种群和管理单元,以及遗传方法是否能够在相关的时空尺度上进行推断,仍存在有限的共识。在这里,我们提出了一种新的方法,该方法整合了遗传、生活史和人口统计数据,以确定南斯堪的纳维亚海豹的种群和管理单元。首先,使用 15 个微卫星标记和基于模型和距离的遗传聚类方法来确定海豹的种群遗传结构。其次,我们使用海豹的人口统计和生活史数据,在涡旋模拟模型中进行种群生存力分析(PVAs),以确定推断的遗传单元是否可以根据 Lowe 和 Allendorf 的(分子生态学,2010 年,第 30 卷,第 3038 页)“种群生存力标准”,根据人口统计独立性将其分类为管理单元。遗传分析显示,南斯堪的纳维亚海豹存在细微的种群结构,并指出存在几个遗传单元。PVAs 表明,这些遗传单元中的每个单元的普查种群规模都足够大,能够长期维持种群生存力,因此可以将这些单元分类为具有人口统计学独立性的管理单元。我们的研究表明,种群遗传推断可以提供与“非遗传”方法相同的时间和空间分辨率,并且遗传数据和 PVAs 的综合使用是划定种群和管理单元的一种很有前途的方法。