Suppr超能文献

用于ℓ正则化逻辑回归的快速、精确模型选择与排列检验

Fast, Exact Model Selection and Permutation Testing for ℓ-Regularized Logistic Regression.

作者信息

Conroy Bryan, Sajda Paul

机构信息

Columbia University New York, NY.

出版信息

JMLR Workshop Conf Proc. 2012;22:246-254.

Abstract

Regularized logistic regression is a standard classification method used in statistics and machine learning. Unlike regularized least squares problems such as ridge regression, the parameter estimates cannot be computed in closed-form and instead must be estimated using an iterative technique. This paper addresses the computational problem of regularized logistic regression that is commonly encountered in model selection and classifier statistical significance testing, in which a large number of related logistic regression problems must be solved for. Our proposed approach solves the problems simultaneously through an iterative technique, which also garners computational efficiencies by leveraging the redundancies across the related problems. We demonstrate analytically that our method provides a substantial complexity reduction, which is further validated by our results on real-world datasets.

摘要

正则化逻辑回归是统计学和机器学习中使用的一种标准分类方法。与诸如岭回归等正则化最小二乘问题不同,参数估计不能以闭式形式计算,而是必须使用迭代技术进行估计。本文解决了正则化逻辑回归在模型选择和分类器统计显著性检验中常见的计算问题,其中必须求解大量相关的逻辑回归问题。我们提出的方法通过一种迭代技术同时解决这些问题,该技术还通过利用相关问题之间的冗余来提高计算效率。我们通过分析证明了我们的方法显著降低了复杂度,这在我们对真实世界数据集的结果中得到了进一步验证。

相似文献

7
Multi-view L2-SVM and its multi-view core vector machine.多视图L2支持向量机及其多视图核向量机。
Neural Netw. 2016 Mar;75:110-25. doi: 10.1016/j.neunet.2015.12.004. Epub 2015 Dec 24.
8
Regularized Class-Specific Subspace Classifier.正则化类特定子空间分类器。
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2738-2747. doi: 10.1109/TNNLS.2016.2598744.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验