Suppr超能文献

约束型双螺钉固定对脊柱前路畸形矫形术后螺钉把持力和抗循环加载能力的影响:一项比较性生物力学研究。

Impact of constrained dual-screw anchorage on holding strength and the resistance to cyclic loading in anterior spinal deformity surgery: a comparative biomechanical study.

机构信息

*German Scoliosis Center Bad Wildungen, Werner-Wicker-Klinik, Bad Wildungen, Germany †Department for Traumatology and Sports Injuries, Paracelsus Medical University, Salzburg, Austria ‡Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany §Institute of Biomechanics, Paracelsus Medical University, Salzburg, Austria; and ¶Research Office, Biostatistics, Paracelsus Medical University, Salzburg, Austria.

出版信息

Spine (Phila Pa 1976). 2014 Mar 15;39(6):E390-8. doi: 10.1097/BRS.0000000000000200.

Abstract

STUDY DESIGN

Biomechanical in vitro laboratory study.

OBJECTIVE

To compare the biomechanical performance of 3 fixation concepts used for anterior instrumented scoliosis correction and fusion (AISF).

SUMMARY OF BACKGROUND DATA

AISF is an ideal estimate for selective fusion in adolescent idiopathic scoliosis. Correction is mediated using rods and screws anchored in the vertebral bodies. Application of large correction forces can promote early weakening of the implant-vertebra interfaces, with potential postoperative loss of correction, implant dislodgment, and nonunion. Therefore, improvement of screw-rod anchorage characteristics with AISF is valuable.

METHODS

A total of 111 thoracolumbar vertebrae harvested from 7 human spines completed a testing protocol. Age of specimens was 62.9 ± 8.2 years. Vertebrae were potted in polymethylmethacrylate and instrumented using 3 different devices with identical screw length and unicortical fixation: single constrained screw fixation (SC fixation), nonconstrained dual-screw fixation (DNS fixation), and constrained dual-screw fixation (DC fixation) resembling a novel implant type. Mechanical testing of each implant-vertebra unit using cyclic loading and pullout tests were performed after stress tests were applied mimicking surgical maneuvers during AISF. Test order was as follows: (1) preload test 1 simulating screw-rod locking and cantilever forces; (2) preload test 2 simulating compression/distraction maneuver; (3) cyclic loading tests with implant-vertebra unit subjected to stepwise increased cyclic loading (maximum: 200 N) protocol with 1000 cycles at 2 Hz, tests were aborted if displacement greater than 2 mm occurred before reaching 1000 cycles; and (4) coaxial pullout tests at a pullout rate of 5 mm/min. With each test, the mode of failure, that is, shear versus fracture, was noted as well as the ultimate load to failure (N), number of implant-vertebra units surpassing 1000 cycles, and number of cycles and related loads applied.

RESULTS

Thirty-three percent of vertebrae surpassed 1000 cycles, 38% in the SC group, 19% in the DNS group, and 43% in the DC group. The difference between the DC group and the DNS group yielded significance (P = 0.04). For vertebrae not surpassing 1000 cycles, the number of cycles at implant displacement greater than 2 mm in the SC group was 648.7 ± 280.2 cycles, in the DNS group was 478.8 ± 219.0 cycles, and in the DC group was 699.5 ± 150.6 cycles. Differences between the SC group and the DNS group were significant (P = 0.008) as between the DC group and the DNS group (P = 0.0009). Load to failure in the SC group was 444.3 ± 302 N, in the DNS group was 527.7 ± 273 N, and in the DC group was 664.4 ± 371.5 N. The DC group outperformed the other constructs. The difference between the SC group and the DNS group failed significance (P = 0.25), whereas there was a significant difference between the SC group and the DC group (P = 0.003). The DC group showed a strong trend toward increased load to failure compared with the DNS group but without significance (P = 0.067). Surpassing 1000 cycles had a significant impact on the maximum load to failure in the SC group (P = 0.0001) and in the DNS group (P = 0.01) but not in the DC group (P = 0.2), which had the highest number of vertebrae surpassing 1000 cycles.

CONCLUSION

Constrained dual-screw fixation characteristics in modern AISF implants can improve resistance to cyclic loading and pullout forces. DC constructs bear the potential to reduce the mechanical shortcomings of AISF.

摘要

研究设计

生物力学体外实验室研究。

目的

比较三种用于前曲度器械矫正融合术(AISF)的固定概念的生物力学性能。

背景资料总结

AISF 是青少年特发性脊柱侧凸的选择性融合的理想估计。矫正通过锚固在椎体中的棒和螺钉来介导。应用大的矫正力会促进植入物-椎体界面的早期弱化,潜在地导致术后矫正丢失、植入物移位和非融合。因此,改善 AISF 中螺钉-棒锚固特性是有价值的。

方法

从 7 个人的脊柱中取出的 111 个胸腰椎椎体完成了一个测试方案。标本的年龄为 62.9±8.2 岁。椎体被种植在聚甲基丙烯酸甲酯中,并使用相同的螺钉长度和单皮质固定的 3 种不同装置进行器械化:单约束螺钉固定(SC 固定)、非约束双螺钉固定(DNS 固定)和约束双螺钉固定(DC 固定)类似于一种新型植入物类型。在应用模拟 AISF 期间手术操作的应力试验后,使用循环加载和拔出试验对每个植入物-椎体单元进行机械测试。测试顺序如下:(1)模拟螺钉-棒锁定和悬臂力的预加载试验 1;(2)模拟压缩/拉伸操作的预加载试验 2;(3)循环加载试验,逐步增加循环加载(最大:200N)协议,以 2Hz 的频率进行 1000 次循环,如果在达到 1000 次循环之前发生大于 2mm 的位移,则试验中止;(4)以 5mm/min 的拔出速度进行同轴拔出试验。在每次测试中,记录失效模式,即剪切与骨折,以及失效时的极限载荷(N)、超过 1000 次循环的植入物-椎体单元数量,以及循环次数和相关施加的载荷。

结果

33%的椎体超过 1000 次循环,SC 组为 38%,DNS 组为 19%,DC 组为 43%。DC 组与 DNS 组之间的差异具有显著性(P=0.04)。对于未超过 1000 次循环的椎体,SC 组在植入物位移大于 2mm 时的循环数为 648.7±280.2 次,DNS 组为 478.8±219.0 次,DC 组为 699.5±150.6 次。SC 组与 DNS 组之间的差异具有显著性(P=0.008),DC 组与 DNS 组之间的差异也具有显著性(P=0.0009)。SC 组的失效载荷为 444.3±302N,DNS 组为 527.7±273N,DC 组为 664.4±371.5N。DC 组的表现优于其他结构。SC 组与 DNS 组之间的差异无显著性(P=0.25),而 SC 组与 DC 组之间的差异具有显著性(P=0.003)。DC 组与 DNS 组相比,失效载荷有增加的趋势,但无显著性(P=0.067)。超过 1000 次循环对 SC 组(P=0.0001)和 DNS 组(P=0.01)的最大失效载荷有显著影响,但对 DC 组(P=0.2)没有影响,DC 组有最多的椎体超过 1000 次循环。

结论

现代 AISF 植入物中约束双螺钉固定特性可以提高对循环加载和拔出力的抵抗力。DC 结构有可能减少 AISF 的机械缺陷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验