Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan.
Institute for Mechanical Systems, ETH Zürich, CLA J.27, Tannenstrasse 3, 8092 Zürich, Switzerland.
Chaos. 2013 Dec;23(4):043107. doi: 10.1063/1.4824314.
Normally hyperbolic invariant manifolds (NHIMs) are well-known organizing centers of the dynamics in the phase space of a nonlinear system. Locating such manifolds in systems far from symmetric or integrable, however, has been an outstanding challenge. Here, we develop an automated detection method for codimension-one NHIMs in autonomous dynamical systems. Our method utilizes Stationary Lagrangian Coherent Structures (SLCSs), which are hypersurfaces satisfying one of the necessary conditions of a hyperbolic LCS, and are also quasi-invariant in a well-defined sense. Computing SLCSs provides a quick way to uncover NHIMs with high accuracy. As an illustration, we use SLCSs to locate two-dimensional stable and unstable manifolds of hyperbolic periodic orbits in the classic ABC flow, a three-dimensional solution of the steady Euler equations.
通常来说,双曲不变流形(NHIMs)是非线性系统相空间中动力学的重要组织中心。然而,在远离对称或可积的系统中定位这种流形,一直是一个突出的挑战。在这里,我们为自治动力系统中的余维一 NHIM 开发了一种自动检测方法。我们的方法利用了静止拉格朗日相干结构(SLCSs),它是满足双曲 LCS 必要条件之一的超曲面,并且在明确的意义上是准不变的。计算 SLCSs 可以快速、高精度地揭示 NHIMs。作为说明,我们使用 SLCSs 定位经典 ABC 流中的双曲周期轨道的二维稳定和不稳定流形,这是稳态欧拉方程的三维解。